Author: Busch, M.
Paper Title Page
MOPVA054 High Power RF Coupler for the CW-Linac Demonstrator at GSI 990
 
  • M. Heilmann, W.A. Barth, S. Yaramyshev
    GSI, Darmstadt, Germany
  • M. Amberg, M. Basten, R. Blank, M. Busch, F.D. Dziuba, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
 
  The planned super-heavy element (SHE) research project investigates heavy ions near the coulomb barrier in future experiments. A superconducting (sc) continuous wave (cw) CH-Linac Demonstrator was developed and installed behind the High Charge State Injector (HLI) at GSI Darmstadt, Germany. In future the advanced cw-LINAC setup, with several CH-cavities, will accelerates the heavy ion beam from HLI with an energy of 1.4 MeV/u up to 3.5 - 7.3 MeV/u. The RF power of several kW will be coupled capacitively into the CH-cavities with minimal reflection at an operation frequency of 217 MHz. Two ceramic windows (Al2O3) are installed inside the RF coupler, to reduce the premature contamination of the cavity and as an additional vacuum barrier. The CH-cavity will be operated at cryogenic temperature (4 K) and will be increased to room temperature along the RF coupler. The optimally adapted RF coupler design, providing minimal RF losses and simultaneously maximal performance, was optimized by electromagnetic simulations. An RF coupler design with a reflection-free RF adaptor as well as the temperature distribution along the coupler will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA061 Beam Dynamics Study for the HIM&GSI Heavy Ion SC CW-LINAC 2217
 
  • S. Yaramyshev, W.A. Barth, M. Heilmann
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
  • M. Basten, M. Busch, F.D. Dziuba, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  A sc cw-linac with variable output energy from 3.7 to 7.5 MeV/u for ions with mass to charge ratio of A/Z<6 is recently under development at HIM and GSI. Following the results of the latest RF-tests with the newly constructed sc CH-DTL cavity, even heavier ions up to Uranium 28+ could be potentially accelerated with the already reached higher RF-voltage. Also the possibility for an up to 10 MeV/u increased output energy, using the same 13 independent cavities, is under consideration. All these options require an advanced beam dynamics layout, as well as a versatile procedure for transverse and longitudinal beam matching along the entire linac. The proposed algorithms are discussed and the obtained simulation results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA062 Construction of the MYRRHA Injector 2221
 
  • D. Mäder, H. Höltermann, H. Hähnel, D. Koser, K. Kümpel, U. Ratzinger, W. Schweizer
    BEVATECH, Frankfurt, Germany
  • C. Angulo, J. Belmans, L. Medeiros Romão, D. Vandeplassche
    Studiecentrum voor Kernenergie - Centre d'Étude de l'énergie Nucléaire (SCK•CEN), Mol, Belgium
  • M. Busch, H. Podlech
    IAP, Frankfurt am Main, Germany
 
  A collaboration of SCK•CEN, IAP and BEVATECH GmbH is currently constructing the room temperature CH section of the 16.6 MeV CW proton injector for the MYRRHA project. The elaboration of all the construction readiness files for the construction of the accelerating cavities of the first CH section (1.5 to 5.9 MeV) is ongoing. In parallel, the planning, development and fabrication of all further components of this accelerator section is in progress, while the full study for the remaining section is under preparation. This contribution is documenting the most recent status.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA064 Updated Cavities Design for the FAIR p-Linac 2227
 
  • A. Almomani, M. Busch, F.D. Dziuba, U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main, Germany
  • F.D. Dziuba, C.M. Kleffner
    GSI, Darmstadt, Germany
 
  The research program of antiproton beams for the FAIR facility requires a dedicated 68 MeV, 70 mA proton injector. This injector will consist of an RFQ followed by six room temperature Crossbar H-type CH-cavities operated at 325 MHz. The beam dynamics had been revised by IAP Frankfurt in collaboration with GSI-FAIR in Darmstadt to further optimize the design. This step was followed by cavity RF design. The detailed mechanical cavity design will begin in 2017, while the quadrupole lenses are under production already. In this paper, besides an overview the RF design of the coupled cavities with integrated focusing triplets will be a main focus.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA072 Conceptual Injector Design for an Electron-Ion-Collider Front-End 2246
 
  • H. Podlech, M. Busch, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • R.C. York
    NSCL, East Lansing, Michigan, USA
  • C. Zhang
    GSI, Darmstadt, Germany
 
  An electron-hadron collider (EIC) could be the next large-scale nuclear physics facility in the United States. A hadron linac with a final energy of 40 AMeV (heavy ions) and up to 130 MeV for protons with an upgrade path to higher energies is required as the first step of the hadron accelerator chain. From a cost point of view superconducting technology seems to be the better choice above an energy of about 5 AMeV compared to a room temperature (rt) solution. This paper describes the conceptual design of a rt front-end up to an energy of 5 AMeV appropriate as initial element of the EIC hadron linac. It consists of two separate injectors based on efficient H-mode cavities, one optimized for heavy ions (Pb30+) and the other optimized for protons and deuterons. Beam dynamics and first RF simulations are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)