Author: Burkart, F.
Paper Title Page
WEPVA033 Conceptual Design Considerations for a 1.3 TeV Superconducting SPS (scSPS) 3323
 
  • F. Burkart, W. Bartmann, M. Benedikt, B. Goddard, A. Milanese, J.S. Schmidt
    CERN, Geneva, Switzerland
 
  The Future Circular Collider for hadrons (FCC-hh) envisaged at CERN will require a High Energy Booster as injector. One option being studied is to reuse the 6.9 km circumference tunnel of the SPS to house a fast-ramping superconducting machine. This paper presents the conceptual design considerations for this superconducting single aperture accelerator (designated scSPS) which can be used to accelerate protons to an extraction energy of 1.3 TeV, both for FCC and for fixed target beam operation in CERN's North Area. As FCC injector this accelerator has to be used in a fast cycling mode to fulfil the FCC-hh requirements concerning filling time, which impacts directly the choice of magnet technology. The reliability and availability will also play important roles in the design, and the inclusion of a fixed target capacity also has significant implications for the lattice and layout. The cell design, magnet parameters, overall layout, design of the different insertion and performance estimates for specific applications will be presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA095 Preliminary Estimate of Beam Induced Power Deposition in a FCC-hh Injection Kicker Magnet 3475
 
  • A. Chmielinska, M.J. Barnes, W. Bartmann, F. Burkart, B. Goddard
    CERN, Geneva, Switzerland
  • A. Chmielinska
    EPFL, Lausanne, Switzerland
 
  The Future Circular Collider for hadrons (FCC-hh) will require a fast injection kicker system that is highly reliable and that does not limit accelerator performance. Important considerations in the design of such a system are machine protection constraints, collider filling factor and hence rise and fall times of the kicker magnet field. Fast rise time kicker magnets are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture. The beam coupling impedance of the kicker magnets is crucial, as this can be a dominant contribution to beam instabilities. In addition, beam-induced heating of the ferrite yoke due to the real component of the longitudinal beam coupling impedance needs to be controlled: if the ferrite temperature exceeds the Curie point this impacts the ability to inject beam and hence the availability of the machine. This paper presents estimates for the beam induced power deposition in the ferrite yoke, based on a calculated FCC beam spectrum and an analytical model of longitudinal impedance for unshielded kicker magnets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)