Author: Brentegani, E.
Paper Title Page
TUPIK023 Gas-filled Capillaries for Plasma-Based Accelerators 1731
SUSPSIK038   use link to see paper's listing under its alternate paper code  
 
  • F. Filippi
    INFN-Roma, Roma, Italy
  • M.P. Anania, A. Biagioni, E. Brentegani, E. Chiadroni, M. Ferrario, R. Pompili, S. Romeo
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)