Author: Bregliozzi, G.
Paper Title Page
TUOAB1 First LHC Transverse Beam Size Measurements With the Beam Gas Vertex Detector 1240
SUSPSIK078   use link to see paper's listing under its alternate paper code  
 
  • A. Alexopoulos, C. Barschel, E. Bravin, G. Bregliozzi, N. Chritin, B. Dehning, M. Ferro-Luzzi, M. Giovannozzi, R. Jacobsson, L.K. Jensen, O.R. Jones, V. Kain, R. Matev, M.N. Rihl, V. Salustino Guimaraes, R. Veness, S. Vlachos, B. Würkner
    CERN, Geneva, Switzerland
  • A. Bay, F. Blanc, S. Gianì, O. Girard, G.J. Haefeli, P. Hopchev, A. Kuonen, T. Nakada, O. Schneider, M. Tobin, Q.D. Veyrat, Z. Xu
    EPFL, Lausanne, Switzerland
  • R. Greim, W. Karpinski, T. Kirn, S. Schael, A. Schultz von Dratzig, G. Schwering, M. Wlochal
    RWTH, Aachen, Germany
 
  The Beam Gas Vertex detector (BGV) is an innovative beam profile monitor based on the reconstruction of beam-gas interaction vertices which is being developed as part of the High Luminosity LHC project. Tracks are identified using several planes of scintillating fibres, located outside the beam vacuum chamber and perpendicular to the beam axis. The gas pressure in the interaction volume is adjusted such as to provide an adequate trigger rate, without disturbing the beam. A BGV demonstrator monitoring one of the two LHC beams was fully installed and commissioned in 2016. First data and beam size measurements show that the complete detector and data acquisition system is operating as expected. The BGV operating parameters are now being optimised and the reconstruction algorithms developed to produce accurate and fast reconstruction on a CPU farm in order to provide real time beam profile measurements to the LHC operators.  
slides icon Slides TUOAB1 [3.456 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOAB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA032 Beam-Gas Background Observations at LHC 2129
 
  • S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • R. Alemany-Fernández, F. Alessio, G. Bregliozzi, H. Burkhardt, G. Corti, A. Di Mauro, M. Guthoff, A. Manousos, K.N. Sjobak, C. Yin Vallgren
    CERN, Geneva, Switzerland
  • A. Alici
    Bologna University, Bologna, Italy
  • S. D'Auria
    University of Glasgow, Glasgow, United Kingdom
  • S.M. Gibson
    JAI, Egham, Surrey, United Kingdom
  • D. Lazic
    BUphy, Boston, Massachusetts, USA
 
  Observations of beam-induced background at LHC during 2015 and 2016 are presented in this paper. The four LHC experiments use the non-colliding bunches present in the physics-filling pattern of the accelerator to trigger on beam-gas interactions. During luminosity production the LHC experiments record the beam-gas interactions using dedicated background monitors. These data are sent to the LHC control system and are used to monitor the background levels at the experiments during accelerator operation. This is a very important measurement, since poor beam-induced background conditions can seriously affect the performance of the detectors. A summary of the evolution of the background levels during 2015 and 2016 is given in these proceedings.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA100 Operational Experience of the Upgraded LHC Injection Kicker Magnets During Run 2 and Future Plans 3495
 
  • M.J. Barnes, A. Adraktas, G. Bregliozzi, L. Ducimetière, B. Goddard, B. Salvant, J. Sestak, L. Vega Cid, W.J.M. Weterings, C. Yin Vallgren
    CERN, Geneva, Switzerland
 
  During Run 1 of the LHC, one of the injection kicker magnets caused occasional operational delays due to beam induced heating with high bunch intensity and short bunch lengths. In addition, there were also sporadic issues with vacuum activity and electrical flashover of the injection kickers. An extensive program of studies was launched and significant upgrades were carried out during Long Shutdown 1 (LS 1). These upgrades included a new design of beam screen to reduce both beam coupling impedance of the kicker magnet and the electric field associated with the screen conductors, hence decreasing the probability of electrical breakdown in this region. This paper presents operational experience of the injection kicker magnets during the first years of Run 2 of the LHC, including a discussion of faults and kicker magnet issues that limited LHC operation. In addition, in light of these issues, plans for further upgrades are briefly discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA108 Operational Feedback and Analysis of Current and Future Designs of the Injection Protection Absorbers in the Large Hadron Collider at CERN 3517
 
  • D. Carbajo Perez, N. Biancacci, C. Bracco, G. Bregliozzi, M. Calviani, M.I. Frankl, L. Gentini, S.S. Gilardoni, G. Iadarola, I. Lamas Garcia, A. Lechner, A. Perillo-Marcone, B. Salvant
    CERN, Geneva, Switzerland
 
  Two injection protection absorbers, so-called TDIs (Target Dump Injection), are installed close to Interaction Points IP2 and IP8 of the Large Hadron Collider (LHC) right downstream of the injection kicker magnets (MKI). Malfunction or timing errors in the latter lead to wrong steering of the beam, which must then be intercepted by the TDI to avoid downstream equipment (which includes superconducting magnets) damage. In recent years, MKI failures during operation have brought to light opportunities for improvement of the TDI. The upgrade of this absorber, so-called TDIS (where S stands for segmented), is conceived as part of the High Luminosity-LHC (HL-LHC) project and those operational issues are taken into account for its design. The present document describes not only the aspects related to the current TDI performance and their impact in its successor's design but also the key modifications to cope with the stronger requirements associated to the higher luminosity goal.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)