Author: Bertarelli, A.
Paper Title Page
MOPAB003 Energy Deposition in the Betatron Collimation Insertion of the 100 TeV Future Circular Collider 68
 
  • M.I. Besana, C. Bahamonde Castro, A. Bertarelli, R. Bruce, F. Carra, F. Cerutti, A. Ferrari, M. Fiascaris, A. Lechner, A. Mereghetti, S. Redaelli, E. Skordis, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  The FCC proton beam is designed to carry a total energy of about 8500 MJ, a factor of 20 above the LHC. In this context, the collimation system has to deal with extremely tight requirements to prevent quenches and material damage. A first layout of the betatron cleaning insertion was conceived, adapting the present LHC collimation system to the FCC lattice. A crucial ingredient to assess its performance, in particular to estimate the robustness of the protection devices and the load on the downstream elements, is represented by the simulation of the particle shower generated at the collimators, allowing detailed energy deposition estimations. This paper presents the first results of the simulation chain starting from the proton losses generated with the Sixtrack-FLUKA coupling, as currently done for the present LHC and for its upgrade. Expectations in terms of total power, peak power density and integrated dose on the different accelerator components are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB005 The MultiMat Experiment at CERN HiRadMat Facility: Advanced Testing of Novel Materials and Instrumentation for HL-LHC Collimators 76
 
  • F. Carra, A. Bertarelli, E. Berthomé, C. Fichera, J. Guardia, M. Guinchard, L.K. Mettler, S. Redaelli, O. Sacristan De Frutos
    CERN, Geneva, Switzerland
  • T.R. Furness
    University of Huddersfield, Huddersfield, United Kingdom
  • M. Portelli
    UoM, Msida, Malta
 
  Funding: *Part of the work described in this thesis was developed in the scope of the EuCARD-2 Project, WP11 'ColMat ' HDED', co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement n. 312453. Research supported by the HL-LHC project.
The increase of the stored beam energy in future particle accelerators, such as the HL-LHC and the FCC, calls for a radical upgrade in the design, materials and instrumentation of Beam Intercepting Devices (BID), such as collimators Following successful tests in 2015 that validated new composite materials and a novel jaw design conceived for the HL-LHC collimators, a new HiRadMat experiment, named 'HRMT36-MultiMat', is scheduled for autumn 2017. Its objective is to determine the behaviour under high intensity proton beams of a broad range of materials relevant for collimators and beam intercepting devices, thin-film coatings and advanced equipment. The test bench features 16 separate target stations, each hosting various specimens, allowing the exploration of complex phenomena such as dynamic strength, internal damping, nonlinearities due to anisotropic inelasticity and inhomogeneity, effects of energy deposition and radiation on coatings. This paper details the main technical solutions and engineering calculations for the design of the test bench and of the specimens, the candidate target materials and the instrumentation system
#federico.carra@cern.ch
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB006 Design and Prototyping of New CERN Collimators in the Framework of the LHC Injector Upgrade (LIU) Project and the High-Luminosity (HL-LHC) Project 80
 
  • F.-X. Nuiry, O. Aberle, M. Bergeret, A. Bertarelli, N. Biancacci, R. Bruce, M. Calviani, F. Carra, A. Dallocchio, L. Gentini, S.S. Gilardoni, R. Illan Fiastre, I. Lamas Garcia, A. Masi, A. Perillo-Marcone, S. Pianese, S. Redaelli, E. Rigutto, B. Salvant
    CERN, Geneva, Switzerland
 
  In the framework of the Large Hadron Collider (LHC) Injectors Upgrade (LIU) and the High-Luminosity LHC (HL-LHC) Projects at CERN (European Organization for Nuclear Research, in Geneva, Switzerland), collimators in the Super Proton Synchrotron (SPS) to LHC transfer lines as well as ring collimators in the LHC will undergo important upgrades in the forthcoming years, mainly focused during the Long Shutdown 2 foreseen during 2019-2020. This contribution will detail the current design of the TCDIL collimators with a particular emphasis on the engineering developments performed on the collimator jaws, aiming at getting a stringent flatness while consid-ering also the integration of thermal shock resistant materials. The prototyping phase done at CERN will be also described. The activities ongoing to prepare the series production for other LHC collimator types (TCPPM, TCSPM, TCTPM, TCLD) will be presented, describing the role that each of these collimators play on the HL-LHC Project. A focus on the series production processes, the manufacturing and assembly technologies involved and the quality and performance assurance tests will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA115 Progress with Long-Range Beam-Beam Compensation Studies for High Luminosity LHC 2358
 
  • A. Rossi, O. Aberle, J. Albertone, A. Bertarelli, C.B. Boccard, F. Carra, G. Cattenoz, Y. Delaup, S.D. Fartoukh, G. Gobbi, J. Lendaro, Y. Papaphilippou, D. Perini, S. Redaelli, H. Schmickler, C. Zanoni
    CERN, Geneva, Switzerland
  • A.M. Barnyakov, A.E. Levichev, D.A. Nikiforov
    BINP SB RAS, Novosibirsk, Russia
  • M. Fitterer, A.S. Patapenka, G. Stancari, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interaction regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA113 Thermo-Physical and Mechanical Characterisation of Novel Materials under Development for HL-LHC Beam Intercepting Devices 3536
 
  • O. Sacristan De Frutos, A. Bertarelli, L. Bianchi, F. Carra, J. Guardia, M. Guinchard, S. Redaelli
    CERN, Geneva, Switzerland
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD-2, grant agreement no.312453
The collimation system for high energy particle accelerators as HL-LHC, must be designed to withstand the close interaction with intense and energetic particle beams, safely operating over an extended range of temperatures in extreme conditions (pressure, strain-rate, radiation), which are to become more demanding with the High Luminosity LHC. In order to withstand such conditions, the candidate materials must possess among other properties outstanding thermal shock resistance and high thermal and electrical conductivity, condition only met by advanced or novel materials. Therefore, an extensive R&D program has been launched to develop novel materials capable of replacing or complementing materials used for present collimators. So far, Molybdenum Carbide - Graphite and Copper-Diamond composites have been identified as the most promising materials. Literature data are scarce or non-existing for these materials. For this reason the successive characterisation campaigns constitute a linchpin of the R&D program. This paper reviews the experimental program followed for the thermo-physical and mechanical characterisation of the materials, and discusses the most relevant results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)