Author: Bergan, W.F.
Paper Title Page
TUPVA136 Using Sloppy Models for Constrained Emittance Minimization at the Cornell Electron Storage Ring (CESR) 2418
 
  • W.F. Bergan, A.C. Bartnik, I.V. Bazarov, H. He, D. L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.P. Sethna
    Cornell University, Ithaca, New York, USA
 
  Funding: DOE DE-SC0013571 NSF DGE-1144153
In order to minimize the emittance at the Cornell Electron Storage Ring (CESR), we measure and correct the orbit, dispersion, and transverse coupling of the beam.* However, this method is limited by finite measurement resolution of the dispersion, and so a new procedure must be used to further reduce the emittance due to dispersion. In order to achieve this, we use a method based upon the theory of sloppy models.** We use a model of the accelerator to create the Hessian matrix which encodes the effects of various corrector magnets on the vertical emittance. A singular value decomposition of this matrix yields the magnet combinations which have the greatest effect on the emittance. We can then adjust these magnet ‘‘knobs'' sequentially in order to decrease the dispersion and the emittance. We present here comparisons of the effectiveness of this procedure in both experiment and simulation using a variety of CESR lattices. We also discuss techniques to minimize changes to parameters we have already corrected.
* J. Shanks, D.L. Rubin, and D. Sagan, Phys. Rev. ST Accel. Beams 17, 044003 (2014).
** K.S. Brown and J.P. Sethna, Phys. Rev. E 68, 021904 (2003).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)