Author: Böker, J.
Paper Title Page
WEPIK067 Beam-Dynamics Simulation Studies for the HESR 3084
 
  • J.H. Hetzel, U. Bechstedt, J. Böker, A. Lehrach, B. Lorentz, S. Quilitzsch, H. Soltner, R. Tölle
    FZJ, Jülich, Germany
  • A. Lehrach
    RWTH, Aachen, Germany
 
  The High Energy Storage Ring (HESR) is part of the future Facility for Antiproton and Ion Research (FAIR) placed in Darmstadt (Germany). The HESR is designed for antiprotons with a momentum range from 1.5 GeV/c to 15 GeV/c, but will as well be suitable to provide heavy ion beams with a momentum range from approximately 0.6 GeV/c to 5.8 GeV/c. To guarantee smooth operation it is crucial to verify and to optimize the design with beam-dynamics simulations. Within recent studies* calculations based on a variant of the Lyapunov exponent were carried out to estimate the dynamic aperture. The studies could reproduce expected influences as reduced aperture due to tune resonances and tune shifts due to coupling. Thus they can be extended to investigate the dynamic behaviour of the beam and identify the main restrictions to the dynamic aperture near the chosen betatron tune. Furthermore ongoing measurements of the magnetic fields of the already produced bending dipoles and quadrupoles deliver a more precise insight to the harmonic content of these elements. Thus the existing simulations could now be updated by including the new measurement results.
*J. Hetzel, A. Lehrach, U. Bechstedt, J. Böker, B. Lorentz, R. Tölle: Towards Beam-Dynamics Simulations Including More Realistic Field Descriptions for the HESR, IPAC'16
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)