Author: Baudrenghien, P.
Paper Title Page
MOPVA102 Modeling the Low Level RF Response on the Beam during Crab Cavity Quench 1098
 
  • R. Apsimon, G. Burt, A.C. Dexter
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • P. Baudrenghien, K.N. Sjobak
    CERN, Geneva, Switzerland
 
  The High Luminosity Upgrade for the LHC (HL-LHC) relies on crab cavities to compensate for the luminosity reduction due to the crossing angle of the colliding bunches at the interaction points. In this paper we present the simulation studies of cavity quenches and the impact on the beam. The cavity voltage and phase during the quench is determined from a simulation in Matlab and used to determine the impact on the beam from tracking simulations in SixTrack. The results of this study are important for determining the required machine protection and interlock systems for HL-LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA014 The 2016 Proton-Nucleus Run of the LHC 2071
 
  • J.M. Jowett, R. Alemany-Fernández, G. Baud, P. Baudrenghien, R. De Maria, R. De Maria, D. Jacquet, M.A. Jebramcik, A. Mereghetti, T. Mertens, M. Schaumann, H. Timko, M. Wendt, J. Wenninger
    CERN, Geneva, Switzerland
 
  For five of the LHC experiments the second p-Pb collision run planned in 2016 offered the opportunity to answer a range of important physics questions arising from the surprise discoveries (e.g., flow-like collective phenomena in small systems) made in earlier Pb-Pb, p-Pb and p-p runs. However the diversity of the physics and their respective capabilities led them to request very different operating conditions, in terms of collision energy, luminosity and pile-up. These appeared mutually incompatible within the available one month of operation. Nevertheless, a plan to satisfy most requirements was developed and implemented successfully. It exploited different beam lifetimes at two beam energies of 4 Z TeV and 6.5 Z TeV, a variety of luminosity sharing and bunch filling schemes, and varying beam directions. The outcome of this very complex strategy for repeated re-commissioning and operation of the LHC included the longest ever LHC fill with luminosity levelled for almost 38 h. The peak luminosity achieved exceeded the design value by a factor 7.8 and integrated luminosity substantially exceeded the experiments' requests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA128 Performance of the CERN Injector Complex and Transmission Studies into the LHC during the Second Proton-Lead Run 2395
 
  • R. Alemany-Fernández, S.C.P. Albright, M.E. Angoletta, J. Axensalva, W. Bartmann, H. Bartosik, P. Baudrenghien, G. Bellodi, A. Blas, T. Bohl, E. Carlier, S. Cettour-Cave, K. Cornelis, H. Damerau, A. Findlay, S.S. Gilardoni, S. Hancock, A. Huschauer, M.A. Jebramcik, S. Jensen, J.M. Jowett, V. Kain, D. Küchler, A.M. Lombardi, D. Manglunki, T. Mertens, M. O'Neil, S. Pasinelli, Á. Saá Hernández, M. Schaumann, R. Scrivens, R. Steerenberg, H. Timko, V. Toivanen, G. Tranquille, F.M. Velotti, F.J.C. Wenander, J. Wenninger
    CERN, Geneva, Switzerland
 
  The LHC performance during the proton-lead run in 2016 fully relied on a permanent monitoring and systematic improvement of the beam quality in all the injectors. The beam production and characteristics are explained in this paper, together with the improvements realized during the run from the source up to the flat top of the LHC. Transmission studies from one accelerator to the next as well as beam quality evolution studies during the cycle at each accelerator, have been carried out and are summarized in this paper. In 2016, the LHC had to deliver the beams to the experiments at two different energies, 4 Z TeV and 6.5 Z TeV. The properties of the beams at these two energies are also presented  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA035 The PSB Operational Scenario with Longitudinal Painting Injection in the Post-LIU Era 3331
 
  • V. Forte, S.C.P. Albright, M.E. Angoletta, P. Baudrenghien, E. Benedetto, A. Blas, C. Bracco, C. Carli, A. Findlay, R. Garoby, G. Hagmann, A.M. Lombardi, B. Mikulec, M.M. Paoluzzi, J.L. Sanchez Alvarez, R. Wegner
    CERN, Geneva, Switzerland
 
  Longitudinal painting has been presented as an elegant technique to fill the longitudinal phase space at injection to the CERN PSB once it is connected with the new Linac4. Painting brings several advantages related to a more controlled longitudinal filamentation, lower peak line density and beating reduction, resulting in a smaller space-charge tune spread. This could be an advantage especially for high intensity beams (> 6·1012 protons per bunch) to limit losses on the transverse acceptance of the machine. This paper presents an overview on the possible advantages of the technique for operational and test beams, taking care of the hardware limitations and possible failure scenarios.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)