Author: Bambade, P.
Paper Title Page
MOPAB027 Preparation of CVD Diamond Detector for fast Luminosity Monitoring of SuperKEKB 135
SUSPSIK070   use link to see paper's listing under its alternate paper code  
 
  • C.G. Pang, P. Bambade, D. El Khechen, D. Jehanno, V. Kubytskyi, Y. Peinaud, C. Rimbault
    LAL, Orsay, France
 
  The SuperKEKB e+-e collider aims to reach a very high luminosity of 8×10 35 cm'2s'1, using highly focused ultra-low emittance bunches colliding every 4ns. To meet the requirement of the dithering feedback system used to stabilize the horizontal orbit at the IP (interaction point), a relative precision of 10 '3 in 1ms is specified for the fast luminosity monitoring, which can be in principle achieved thanks to the large cross section of the radiative Bhabha process. This paper firstly presents the fraction of detected Bhabha scattering positrons with a new beam pipe arrangement coupled with a Tungsten radiator to be installed in the Low Energy Ring; Then the characteristics of signals from a sCVD diamond detector with thickness of 140'm coupled with a broadband current amplifier were studied based on tests with a Sr-90 source; Finally, simulated results for the reconstructed luminosity and the relative precision with different assumed luminosities are also reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB029 Experimental Study of Halo Formation at ATF2 142
SUSPSIK071   use link to see paper's listing under its alternate paper code  
 
  • R.J. Yang, P. Bambade, A. Faus-Golfe, V. Kubytskyi, S. Wallon
    LAL, Orsay, France
  • A. Aryshev, T. Naito
    KEK, Ibaraki, Japan
  • N. Fuster-Martínez
    IFIC, Valencia, Spain
 
  For Accelerator Test Facility 2 (ATF2), as well as other high-intensity accelerators, beam halo has been an important aspect reducing the machine performance and activating the components. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the avail- able theoretical models with an adequate experiment setup. In this paper, the experimental measurement of the beam halo formation from beam gas scattering is presented. The upgrading of an OTR/YAG screen monitor for future halo study is also introduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK099 Tuning-Based Design Optimization of CLIC Final Focus System at 3 TeV 760
SUSPSIK047   use link to see paper's listing under its alternate paper code  
 
  • F. Plassard, A. Latina, E. Marín, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • P. Bambade
    LAL, Orsay, France
 
  The tuning aims to mitigate static imperfections of the Final Focus System (FFS) for emittance preservation at the Interaction Point (IP). A simulation campaign on the nominal CLIC FFS at 3 TeV have shown the need of rethink the design in order to ease the tuning of the machine. The goal is to optimize the lattice in order to make the FFS more tolerant to misalignments by reducing the strength of the sextupoles. The tuning efficiency is promoted as figure of merit to find the optimal layout of the FFS. A comparative study of the tuning performances have been performed for two L* options.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK100 Beam Delivery System Optimization for CLIC 380 GeV 764
 
  • F. Plassard, A. Latina, E. Marín, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • P. Bambade
    LAL, Orsay, France
 
  In the framework of the CLIC rebaselining, the Beam Delivery System (BDS) have been re-optimized for its initial stage at 380 GeV. Two BDS designs with L*=4.3 meters and L*=6 meters have been investigated. The optimization of the lattices and the beam parameters at the interaction point (IP) have been performed by taking into account their energy upgrade to 3 TeV and the tuning feasibility of the BDS in presence of static imperfections.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK059 Recent Progress of Dithering System at SuperKEKB 1827
 
  • Y. Funakoshi, H. Fukuma, T. Kawamoto, M. Masuzawa, S. Nakamura, K. Ohmi, T. Oki, S. Uehara
    KEK, Ibaraki, Japan
  • P. Bambade, D. El Khechen, D. Jehanno, V. Kubytskyi, C. Rimbault
    LAL, Orsay, France
  • A.S. Fisher
    SLAC, Menlo Park, California, USA
  • U. Wienands
    ANL, Argonne, Illinois, USA
 
  Recent progress of the dithering system at SuperKEKB is described. Some details of the system layout are shown. Beam orbit and optics related issues are discussed. Preliminary tests of the some components in the Phase 1 beam commissioning or in the bench are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK075 ATF2 Beam Halo Collimation System Background and Wakefield Measurements in the 2016 Runs 1864
 
  • N. Fuster-Martínez, A. Faus-Golfe
    IFIC, Valencia, Spain
  • P. Bambade, A. Faus-Golfe, S. Wallon, R.J. Yang
    LAL, Orsay, France
  • K. Kubo, T. Okugi, T. Tauchi, N. Terunuma
    Sokendai, Ibaraki, Japan
  • S. Kuroda
    KEK, Ibaraki, Japan
  • I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
  • G.R. White
    SLAC, Menlo Park, California, USA
 
  A single vertical beam halo collimation system has been installed in ATF2 in March 2016 to reduce the background in the IP and Post-IP region. In this paper, we present the results of an experimental program carried out during 2016 in order to demonstrate the efficiency of the vertical collimation system and measure the wakefields induced by such a system. Furthermore, a comparison of the measurements of the collimation system wakefield impact with CST PS numerical simulations and analytical calculations is also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA002 Numerical Investigation of Beam Halo From Beam Gas Scattering in KEK-ATF 4410
 
  • R.J. Yang, P. Bambade
    LAL, Orsay, France
  • K. Kubo, T. Okugi, N. Terunuma, D. Zhou
    KEK, Ibaraki, Japan
 
  To demonstrate the final focus schemes of the Future Linear Collider (FLC), the Accelerator Test Facility 2 (ATF2) at KEK is devoted to focus the beam to a RMS size of a few tens of nanometers (nm) vertically and to provide stability at the nm level at the virtual Interaction Point (IP). However, the loss of halo particles upstream will introduce background to the diagnostic instrument measuring the ultra-small beam, using a laser interferometer monitor. To help the realization of the above goals and beam operation, understanding and mitigation of beam halo are crucial. In this paper, we present the systematical simulation of beam halo formation from beam gas Coulomb scattering (BGS) in the ATF damping ring. The behavior of beam halo with various machine parameters is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)