Author: Bahrami, M.
Paper Title Page
TUPAB045 Design and Construction of a Pre-Buncher for Iranian Low Energy Linear Accelerator 1428
 
  • S. Ahmadiannamin
    ILSF, Tehran, Iran
  • M. Bahrami, M.R. Khalvati, M. Lamehi, H. Shaker, M. Shirshekan
    IPM, Tehran, Iran
 
  Iranian IPM low energy linear accelerator project (e-Linac) is in its final steps for commissioning. Beam dynamic simulations with and without Pre-buncher prior to buncher was done. The results represent improvement in capturing efficiency better than 25% by application of Pre-buncher cavity. In this paper, we present the simulation, construction, RF measurements and vacuum test results. After construction, we measured RF reflection coefficient better than -33 dB in the nominal frequency of 2997.9 MHz with quality factor of 4500.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA088 DESIGN AND CONSTRUCTION OF BRAZED SIDE COUPLED CAVITY OF MEDICAL ACCELERATOR 4664
 
  • S. Ahmadiannamin, Kh.S. Sarhadi
    ILSF, Tehran, Iran
  • F. Abbasi, M. Mohseni Kejani
    Shahid Beheshti University, Tehran, Iran
  • M. Bahrami, M. Lamehi
    IPM, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • S. Zarei
    Nuclear Science and Technology Research, InstituteRadiation Application School, Tehran, Iran
 
  Two types of standing wave RF cavities are used routinely in construction of medical linear accelerators. These two types are Side coupled and on-axis coupled standing wave cavities. This selection is based on higher shunt impedance and compactness in comparison to travelling wave RF cavities. In this paper, we present the simulation, construction and measurement results of brazed section of 3 GHz side coupled RF cavity. It is the first successful experience of its kind in Iran. The obtained experiences can be used effectively for construction of side coupled thermionic RF guns and RF cavities of medical or industrial linacs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)