Author: Bahamonde Castro, C.
Paper Title Page
MOPAB003 Energy Deposition in the Betatron Collimation Insertion of the 100 TeV Future Circular Collider 68
 
  • M.I. Besana, C. Bahamonde Castro, A. Bertarelli, R. Bruce, F. Carra, F. Cerutti, A. Ferrari, M. Fiascaris, A. Lechner, A. Mereghetti, S. Redaelli, E. Skordis, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  The FCC proton beam is designed to carry a total energy of about 8500 MJ, a factor of 20 above the LHC. In this context, the collimation system has to deal with extremely tight requirements to prevent quenches and material damage. A first layout of the betatron cleaning insertion was conceived, adapting the present LHC collimation system to the FCC lattice. A crucial ingredient to assess its performance, in particular to estimate the robustness of the protection devices and the load on the downstream elements, is represented by the simulation of the particle shower generated at the collimators, allowing detailed energy deposition estimations. This paper presents the first results of the simulation chain starting from the proton losses generated with the Sixtrack-FLUKA coupling, as currently done for the present LHC and for its upgrade. Expectations in terms of total power, peak power density and integrated dose on the different accelerator components are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB004 Improved Protection of the Warm Magnets of the LHC Betatron Cleaning Insertion 72
 
  • C. Bahamonde Castro, F. Cerutti, P. Fessia, A. Lechner, A. Mereghetti, D. Mirarchi, S. Redaelli, E. Skordis
    CERN, Geneva, Switzerland
  • E. Skordis
    The University of Liverpool, Liverpool, United Kingdom
 
  After the High Luminosity (HL) upgrade in 2024-2026, the LHC is anticipated to increase its integrated luminosity by a factor of 10 beyond its original design value of 300 fb-1. In preparation for this, several improvements to the equipment will already be implemented during the next Long Shutdown (LS2) starting in 2019. In the betatron cleaning insertion, the debris leaking out of several collimators will deposit energy in the downstream warm magnets, causing long-term radiation damage. A new layout has been proposed in which the most exposed magnet of each assembly is removed, reducing the assembly from 6 to 5 magnet units and gaining 2 spare magnets. New absorbers are therefore required to enhance the shielding of the remaining magnet string. In this paper, we present an evaluation of the dose to the warm magnets for post-LS2 operation, and we quantify the achievable reduction of the long-term radiation damage for different absorber configurations. A solution for an improved magnet protection that fulfills the HL-LHC requirements is proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)