Author: Åhnberg, K.
Paper Title Page
THPIK086 Design and Implementation of Stripline Feedback Kickers in the MAX IV 3 GeV Ring 4285
 
  • D. Olsson, L. Malmgren, K. Åhnberg
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The commissioning of a bunch-by-bunch feedback system for the MAX IV 3 GeV storage ring was started in early 2016. At date, the actuators are two stripline kickers oriented in the horizontal and in the vertical plane, respectively. Apart from providing feedback in the transverse plane, the horizontal stripline is simultaneously operating as a longitudinal kicker. This is done by upconverting the longitudinal 0 - 50 MHz baseband signal to the 150 MHz - 250 MHz range where the longitudinal shunt impedance of the stripline is higher. This signal is then fed to the stripline electrodes in common-mode. The design of the stripline kickers and the layout of the bunch-by bunch feedback system in the 3 GeV ring are presented in this report. Results from instability studies in this ring are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK087 A Waveguide Overloaded Cavity Kicker for the MAX IV Bunch-by-Bunch Feedback System 4289
 
  • D. Olsson, L. Malmgren, K. Åhnberg
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The higher-order modes (HOMs) in the main and the 3:rd harmonic cavities are driving longitudinal coupled-bunch mode instabilities (CBMIs) in the MAX IV 3 GeV storage ring. This far, negative feedback has been applied in the longitudinal plane by a stripline kicker at lower ring currents. However, the maximum longitudinal feedback voltage provided by the stripline is rather weak, and a waveguide overload cavity was therefore designed in order to suppress CBMIs at higher ring currents as well. Due to the long bunch length in the MAX IV storage rings, a relatively low center frequency of 625 MHz is selected. The new cavity kicker has been manufactured, and will be installed in the 3 GeV ring during the summer shut-down of 2017. In this paper, the RF and mechanical design of the cavity is presented. Simulation results are also compared with measurements of the manufactured cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)