Author: Arduini, G.
Paper Title Page
TUPIK089 Studies on Luminous Region, Pile-up and Performance for HL-LHC Scenarios 1908
SUSPSIK002   use link to see paper's listing under its alternate paper code  
 
  • L.E. Medina Medrano, G. Arduini, R. Tomás
    CERN, Geneva, Switzerland
  • L.E. Medina Medrano
    UGTO, Leon, Mexico
 
  Funding: Research supported by the HL-LHC project and the Beam project (CONACYT, Mexico).
Studies on luminous region and pile-up density are of great interest for the experiments at the future High Luminosity LHC (HL-LHC) in order to optimize the detector performance. The evolution of these parameters at the two main interaction points of the HL-LHC along optimum physics fills is studied for the baseline and alternative operational scenarios with the latest set of parameters, including a refined description of the longitudinal bunch profile. Results are discussed in terms of a new figure-of-merit, the effective pile-up density.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA034 SPS Studies in Preparation for the Crab Cavity Experiment 2133
 
  • A. Alekou, A. Alekou, F. Antoniou, F. Antoniou, G. Arduini, G. Arduini, H. Bartosik, H. Bartosik, R. Calaga, R. Calaga, Y. Papaphilippou, Y. Papaphilippou, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • A. Alekou, R.B. Appleby, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • R.B. Appleby, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  A local Crab Cavity (CC) scheme will recover head-on collisions at the Interaction Points (IPs) of the High Luminosity LHC (HL-LHC), which aims to increase the LHC luminosity by a factor of 3-10. The first time that CC will ever be tested with proton beams will be in 2018 in the SPS machine. The available dedicated Machine Development (MD) time after the installation of the cavities will be limited and therefore good preparation is essential in order to ensure that the MDs are as efficient as possible. This paper presents the simulations and experimental studies performed in preparation for the future MDs and discusses the next steps.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA126 The SPS Beam Dump Facility 2389
 
  • M. Lamont, G. Arduini, M. Battistin, M. Brugger, M. Calviani, F. B. Dos Santos Pedrosa, M.A. Fraser, L. Gatignon, S.S. Gilardoni, B. Goddard, J.L. Grenard, C. Heßler, R. Jacobsson, V. Kain, K. Kershaw, E. Lopez Sola, J.A. Osborne, A. Perillo-Marcone, H. Vincke
    CERN, Geneva, Switzerland
 
  The proposed SPS beam dump facility (BDF) is a fixed-target facility foreseen to be situated at the North Area of the SPS. Beam dump in this context implies a target aimed at absorbing the majority of incident protons and containing most of the cascade generated by the primary beam interaction. The aim is a general purpose fixed target facility, which in the initial phase is aimed at the Search for Hidden Particles (SHiP) experiment. Feasibility studies are ongoing at CERN to address the key challenges of the facility. These challenges include: slow resonant extraction from the SPS; a target that has the two-fold objective of producing charged mesons as well as stopping the primary proton beam; and radiation protection considerations related to primary proton beam with a power of around 355 kW. The aim of the project is to complete the key technical feasibility studies in time for the European Strategy for Particle Physics (ESPP) update foreseen in 2020. This is in conjunction with the recommendation by the CERN Research Board to the SHiP experiment to prepare a comprehensive design study as input to the ESPP.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)