Author: Arcambal, C.
Paper Title Page
MOPVA040 Status of the ESS Elliptical Cryomodules at CEA Saclay 945
 
  • P. Bosland, C. Arcambal, F. Ardellier, S. Berry, A. Bouygues, A. Bruniquel, E. Cenni, J.-P. Charrier, C. Cloué, G. Devanz, F. Éozénou, T. Hamelin, X. Hanus, P. Hardy, C. Marchand, O. Piquet, J. Plouin, J.P. Poupeau, T. Trublet
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • G. Costanza
    Lund University, Lund, Sweden
  • C. Darve
    ESS, Lund, Sweden
  • P. Michelato
    INFN/LASA, Segrate (MI), Italy
  • G. Olivier
    IPN, Orsay, France
  • F. Peauger
    CEA/DSM/IRFU, France
 
  The first ESS prototype cryomodule with medium beta cavities named M-ECCTD is being assembled at CEA Saclay. The Q curves of the 4 cavities mounted inside the cryomodule are presented, and the four power couplers have been conditioned at high power before their assembly onto the cavity string. Completion of the M-ECCTD assembly outside clean room is in progress as well as the finalization of the RF power test stand preparation. RF power tests of the M-ECCTD will be performed during summer 2017. CEA is preparing the production of the ESS medium and high beta cryomodules of the series before the test of the M-ECCTD and the contracts for the procurement of the most critical components have already been signed  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA044 Conditioning of the Power Couplers for the ESS Elliptical Cavity Prototypes 957
 
  • C. Arcambal, P. Carbonnier, M. Desmons, G. Devanz, T. Hamelin, C. Marchand, C. Servouin
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • C. Darve
    ESS, Lund, Sweden
 
  In the framework of the European Spallation Source (ESS), some power couplers have been designed and manufactured to supply, with RF power, the medium-beta (β=0.67) elliptical cavities of the cryomodule demonstrator. The power couplers work at 704.4 MHz and are tested up to 1.2 MW (repetition rate=14 Hz, RF pulse width close to 3.6 milliseconds). The CEA Saclay is in charge of the design, the manufacturing, the preparation and the conditioning of these power couplers. In this paper, after a general presentation of the power couplers used in the ESS LINAC and their characteristics, we give some détails about the manufacturing and then we describe the different steps of the preparation (cleaning), the assembly of the couplers on the coupling box in cleanroom, the baking of the couplers and the conditioning procedure. Finally, the experimental results obtained in travelling and standing waves on the first pairs of couplers will be shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBB3 ESS SRF Linear Accelerator Components Preliminary Results and Integration 3666
 
  • C. Darve, N. Elias, C.G. Maiano, F. Schlander
    ESS, Lund, Sweden
  • C. Arcambal, G. Devanz, F. Peauger
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • E. Cenni
    CEA/IRFU, Gif-sur-Yvette, France
  • G. Costanza
    Lund University, Lund, Sweden
  • P. Duthil, G. Olry, D. Reynet
    IPN, Orsay, France
  • L. Hermansson
    Uppsala University, Uppsala, Sweden
  • P. Michelato, D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  The European Spallation Source (ESS) is a pan-European project and one of world's largest research infrastructures based on neutron sources. This collaborative project is funded by a collaboration of 17 European countries and is under construction in Lund, Sweden. The 5 MW, 2.86 ms long pulse proton accelerator has a repetition frequency of 14 Hz (4 % duty cycle), and a beam current of 62.5 mA. The Superconducting Radio-Frequency (SRF) linac is composed of three families of Superconducting Radio-Frequency (SRF) cavities, which are being prototyped, counting the spoke resonators with a geometric beta of 0.5, medium-beta elliptical cavities (betag=0.67) and high-beta elliptical cavities (betag=0.86). After a description of the ESS linear accelerator layout, this article will focus on the recent progress towards integration of the first test results of the main critical components to be assembled in cryomodules, then in the ESS tunnel.  
slides icon Slides THOBB3 [25.611 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THOBB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)