Author: Apeland, J.
Paper Title Page
TUPVA008 Assessment of Thermal Loads in the CERN SPS Crab Cavities Cryomodule 2047
 
  • F. Carra, J. Apeland, R. Calaga, O. Capatina, T. Capelli, C. Zanoni
    CERN, Geneva, Switzerland
  • S. Verdú-Andrés
    BNL, Upton, Long Island, New York, USA
 
  Funding: *Work supported by the European Union HL-LHC Project and by US DOE through Brookhaven Science Associates LLC under contract No. DE-AC02-98CH10886 and the US LHC Accelerator Research Program (LARP). Research supported by the HL-LHC project.
As a part of the HL-LHC upgrade, a cryomodule is designed to host two crab cavities for a first test with protons in the SPS machine. The evaluation of the cryomodule heat loads is essential to dimension the cryogenic infrastructure of the system. The current design features two cryogenic circuits. The first circuit adopts superfluid helium at 2 K to maintain the cavities in the superconducting state. The second circuit, based on helium gas at a temperature between 50 K and 70 K, is connected to the thermal screen, also serving as heat intercept for all the interfaces between the cold mass and the external environment. An overview of the heat loads to both circuits, and the combined numerical and analytical estimations, is presented. The heat load of each element is detailed for the static and dynamic scenarios, with considerations on the design choices for the thermal optimization of the most critical components.
#Federico.carra@cern.ch
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)