Paper | Title | Page |
---|---|---|
MOPAB050 | Reconstruction of Sub-Femtosecond Longitudinal Bunch Profile Measurement Data | 207 |
SUSPSIK072 | use link to see paper's listing under its alternate paper code | |
|
||
With a current trend towards shorter electron beams with lengths on the order of few femtoseconds (fs) to sub-femtoseconds both in conventional and novel accelerator communities, the need for diagnostics with equivalent attosecond resolution is increasing. The proposed design for a sub-femtosecond diagnostic by Andonian et al.* is one such example that combines a laser deflector with an RF deflecting cavity to streak the electron beam in the horizontal and vertical direction. In this paper, we present a tool for the reconstruction of the longitudinal beam profile from this diagnostic data, which can be used both for the analysis of planned experiments and testing of different beam scenarios with respect to their specific setup requirements. Applying this method, the usefulness of the device for measurements in a number of example scenarios, including plasma-accelerated and ultrashort RF-accelerated electron beams, is discussed.
*G. Andonian, E. Hemsing, D. Xiang, P. Mumuseci, A. Murokh, S. Tochitsky, et al, Phys. Rev. Spec. Top-Ac. 14, 072802 (2011). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB050 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPIK021 | Generation of Transversely Segmented Beam Using a Nano-Patterned Photocathode | 545 |
|
||
Funding: Work supported by US Department of Energy (DOE) contract DE-SC0009656 with Radiabeam Technologies and by NSF grant PHY-1535401 with Northern Illinois University. Plasmonic photocathodes – nano-patterned photocathodes with periodicity comparable to the excitation laser – have demonstrated enhanced quantum efficiency. In the present paper we present numerical simulations of the beam dynamics associated to the emission process from this type of cathodes and to the subsequent acceleration to relativistic energies by combining WARP and IMPACT-T programs. We especially consider the possibility to transversely image the cathode surface at high energy and enable the generation of transversely segment beams. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUYB1 | First Measurements of Trojan Horse Injection in a Plasma Wakefield Accelerator | 1252 |
|
||
Funding: Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515. Plasma accelerators support accelerating fields of 100's of GV/m over meter-scale distances and routinely produce femtosecond-scale, multi-kA electron bunches. The so called Trojan Horse underdense photocathode plasma wakefield acceleration scheme combines state-of-the-art accelerator technology with laser and plasma methods and paves the way to improve beam quality as regards emittance and energy spread by many orders of magnitude. Electron beam brightness levels exceeding 1020 Am-2 rad-2 may be reached, and the tunability allows for multi-GeV energies, designer bunches and energy spreads <0.05% in a single plasma accelerator stage. The talk will present results of the international E210 multi-year experimental program at SLAC FACET, which culminated in successful first demonstration of the Trojan Horse method during FACET's final experimental run in 2016. Enabling implications for applications, including high performance plasma-based 5th generation light sources such as hard x-ray FEL's, for which start-to-end simulations are presented, and for high energy physics are discussed. |
||
![]() |
Slides TUYB1 [19.089 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUYB1 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |