Author: Andersson, J.
Paper Title Page
TUPAB094 Emittance Improvements in the MAX IV Photocathode Injector 1533
 
  • J. Andersson, F. Curbis, M. Kotur, F. Lindau, S. Thorin, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV injector design predicts a beam with 100 pC of charge and an emittance lower than 1 mm mrad. The photocathode pre-injector is based on the now close to standard 1.6-cell gun adapted to 2.9985 GHz, in combination with a Ti:Sapphire laser system. This system reaches the requirements of the injector operation for the SPF, but can be tuned beyond specifications to open up new operation modes. During 2016 and 2017 several aspects where investigated to improve the emittance from the current gun, the goal was to meet the SPF specifications. In this paper we report on the progress, discuss the steps taken leading to a final emittance of ~ 1 mm mrad and beyond.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB095 The New MAX IV Gun Test Stand 1537
 
  • J. Andersson, F. Curbis, M. Kotur, D. Kumbaro, F. Lindau, E. Mansten, S. Thorin, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The gun test stand from MAX-Lab has been upgraded and moved to a new facility at the MAX IV Laboratory. The new test stand will reuse parts of the equipment from the old test stand but a number of improvements to the setup are be made. In this paper we report on the design of the new gun test stand, research plans in the near future as well as planned and possible future research topics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB096 Pulse Shaping at the MAX IV Photoelectron Gun Laser 1541
 
  • M. Kotur, J. Andersson, M. Brandin, F. Curbis, L. Isaksson, D. Kumbaro, F. Lindau, E. Mansten, D. Olsson, R. Svärd, S. Thorin, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
  • J. Björklund Svensson
    Lund University, Lund, Sweden
 
  A motivation for the development of a versatile, programmable source of shaped picosecond pulses for use in photocathode electron gun preinjectors is presented. We present the experimental setup for arbitrary longitudinal pusle shaping of the MAX IV photocathode gun laser. The setup consists of a grating-based Fourier-domain shaper capable of stretching the pulses directly in the UV domain. Preliminary results are presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB097 MAXIV Photocathode Gun Laser System Specification and Diagnostics 1544
 
  • F. Lindau, J. Andersson, J. Björklund Svensson, M. Brandin, F. Curbis, L. Isaksson, M. Kotur, D. Kumbaro, E. Mansten, D. Olsson, R. Svärd, S. Thorin, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
  • J. Björklund Svensson
    Lund University, Division of Atomic Physics, Lund, Sweden
 
  The MAXIV injector has two guns - a thermionic used for ring injections, and a photocathode used for short pulse facility operation. A commercial Ti:sapphire laser from KMLabs drives the copper based photocathode gun. It has been running without major issues for more than 3 years. The laser delivers up to §I{500}{\textmu J} on the cathode at the third harmonic, §I{263}{nm}, via a vacuum laser transport system. To achieve the desired pulse duration of 2–§I10{ps} the laser pulses, originally ~§I{100}{fs} long, are stretched with a prism pair and the resulting §I{1.5}{ps} pulses stacked by a series of birefringent \textalpha -BBO crystals. Diagnostics consist of photodiodes, spectrometers, and cameras. Longitudinal pulse characterization is done with a cross correlator and a UV FROG.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB099 Status of MAX IV Linac Beam Commissioning and Performance 1547
 
  • S. Thorin, J. Andersson, M. Brandin, F. Curbis, L. Isaksson, M. Kotur, D. Kumbaro, F. Lindau, E. Mansten, D. Olsson, R. Svärd, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
  • J. Björklund Svensson
    Lund University, Division of Atomic Physics, Lund, Sweden
 
  The MAX IV linac is used both for full energy injection into two storage rings at 3 GeV and 1.5 GeV, and as a high brightness driver for a Short Pulse Facility (SPF). The linac has also been designed to handle the high demands of an FEL injector. The linac is now routinely injecting into the two storage rings, and commissioning work is focused towards delivering high brightness pulses to the SPF. In this paper we present results from characterisation of the linac in ring injection mode, as well as results from measurements of key parameters for the SPF such as bunch length and emittance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK031 Driver-Witness-Bunches for Plasma-Wakefield Acceleration at the MAX IV Linear Accelerator 1743
SUSPSIK040   use link to see paper's listing under its alternate paper code  
 
  • J. Björklund Svensson, H.E. Ekerfelt, O. Lundh
    Lund University, Lund, Sweden
  • J. Andersson, F. Curbis, M. Kotur, F. Lindau, E. Mansten, S. Thorin, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Beam-driven plasma-wakefield acceleration is an acceleration scheme promising accelerating fields of at least two to three orders of magnitude higher than in conventional radiofrequency accelerating structures. The scheme relies on using a charged particle bunch (driver) to drive a non-linear plasma wake, into which a second bunch (witness) can be injected at an appropriate distance behind the first, yielding a substantial energy gain of the witness bunch particles. This puts very special demands on the machine providing the particle beam. In this article, we use simulations to show that, if driver-witness-bunches can be generated in the photo-cathode electron gun, the MAX IV Linear Accelerator could be used for plasma-wakefield acceleration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)