Author: Adam, T.
Paper Title Page
MOPIK030 Design of a Beamline From a TR24 Cyclotron for Biological Tissues Irradiation 564
 
  • E. Bouquerel, T. Adam, G. Heitz, C. Maazouzi, C. Matthieu, M. Pellicioli, M. Rousseau, C. Ruescas, J. Schuler, E.K. Traykov
    IPHC, Strasbourg Cedex 2, France
 
  Funding: The PRECy project is supported by the Contrat de Projet Etat-Région (CPER) Alsace Champagne-Ardenne Lorraine.
The PRECy project foresees the use of a 16-25 MeV energy proton beam produced by the recently installed TR24 cyclotron, CYRCé, at the Institut Pluridisciplinaire Hubert Curien (IPHC) of Strasbourg for biological tissues irradiation. One of the exit ports of the cyclotron will be used for this application along with a combination magnet. The platform will consist of up to 3 or 5 experimental stations linked to beamlines in a dedicated area next to the cyclotron vault. One of the beamlines will receive proton beams of a few cm diameter at intensities up to 100 nA. The status of the design of this first beam line is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA121 Focusing and Bunching of Ion Beam in Axial Injection Channel of IPHC Cyclotron TR24 4733
 
  • N.Yu. Kazarinov, I.A. Ivanenko
    JINR, Dubna, Moscow Region, Russia
  • T. Adam, F.R. Osswald, E.K. Traykov
    IPHC, Strasbourg Cedex 2, France
 
  The CYRCé cyclotron (CYclotron pour la ReCherche et l'Enseignement) is used at IPHC (Institut Pluridisciplinaire Hubert Curien) for the production of radio-isotopes for diagnostics, medical treatments and fundamental research in radiobiology. The TR24 cyclotron produced and commercialized by ACSI (Canada) delivers a 16-25 MeV proton beam with intensity from few nA up to 500 mcA. The solenoidal focusing instead of existing quadrupole one is proposed in this report. The changing of the focusing elements will give the better beam matching with the acceptance of the spiral inflector of the cyclotron. The parameters of the focusing solenoid is found. Additionally, the main parameters of the bunching system are evaluated in the presence of the beam space charge. This system consists of the buncher installed in the axial injection beam line of the cyclotron. The using of the greedless multi harmonic buncher may increase the accelerated beam current and will give the opportunity to a new proton beam applications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)