JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for THPIK038: Design of a 100 kW Solid-State RF Pulse Amplifier with a TE011 Mode RF Combiner at 476 MHz

TY - CONF
AU - Otake, Y.
AU - Asaka, T.
AU - Inagaki, T.
ED - Schaa, Volker RW
ED - Arduini, Gianluigi
ED - Pranke, Juliana
ED - Seidel, Mike
ED - Lindroos, Mats
TI - Design of a 100 kW Solid-State RF Pulse Amplifier with a TE011 Mode RF Combiner at 476 MHz
J2 - Proc. of IPAC2017, Copenhagen, Denmark, 14–19 May, 2017
C1 - Copenhagen, Denmark
T2 - International Particle Accelerator Conference
T3 - 8
LA - english
AB - Solid-state RF amplifiers, which have long lifetimes and small failures, are the recent current of high-power RF sources for particle accelerators. Hence, we designed a 100 kW solid-state amplifier with a TE011 mode cavity (Q0=100, 000) power combiner with extreme low-loss operated at 476 MHz and a 6 us pulse width. Developing this amplifier is for replacement of a high-power amplifier using an induction output tube, IOT, in the X-ray free-electron laser, SACLA. In SACLA, highly RF phase and amplitude stabilities of less than 0.01 deg. and 10⁻⁴ in rms are necessary to stable lasing within a 10 % intensity fluctuation. The amplifier comprises a drive amplifier, a reentrant cavity RF power divider, 100 final amplifier modules with a 1 kW output each and a TE011 mode cavity combiner. Water-cooling within 10 mK and a DC power supply with a noise of less than -100 dBV at 10 Hz for the amplifier is necessary to realize the previously mentioned stabilities. Based on the experimental results of a test amplifier module and test combiner cavities, possibility to realize the above-mentioned specifications is large. We report the detail and a part of the performance of the 100 kW amplifier.
PB - JACoW
CP - Geneva, Switzerland
SP - 4180
EP - 4183
KW - cavity
KW - electron
KW - FEL
KW - klystron
KW - laser
DA - 2017/05
PY - 2017
SN - 978-3-95450-182-3
DO - 10.18429/JACoW-IPAC2017-THPIK038
UR - http://jacow.org/ipac2017/papers/thpik038.pdf
ER -