JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for THPAB043: Evolution of Python Tools for the Simulation of Electron Cloud Effects

TY - CONF
AU - Iadarola, G.
AU - Belli, E.
AU - Li, K.S.B.
AU - Mether, L.
AU - Romano, A.
AU - Rumolo, G.
ED - Schaa, Volker RW
ED - Arduini, Gianluigi
ED - Pranke, Juliana
ED - Seidel, Mike
ED - Lindroos, Mats
TI - Evolution of Python Tools for the Simulation of Electron Cloud Effects
J2 - Proc. of IPAC2017, Copenhagen, Denmark, 14–19 May, 2017
C1 - Copenhagen, Denmark
T2 - International Particle Accelerator Conference
T3 - 8
LA - english
AB - PyECLOUD was originally developed as a tool for the simulation of electron cloud build-up in particle accelerators. Over the last five years the code has become part of a wider set of modular and scriptable python tools that can be combined to study different effects of the e-cloud in increasingly complex scenarios. The Particle In Cell solver originally included in PyECLOUD later developed into a stand-alone general purpose library (PyPIC) that now includes advanced features like a refined modeling of curved boundaries and optimized resolution based on the usage of nested grids. The effects of the e-cloud on the beam dynamics can be simulated interfacing PyECLOUD with the PyHEADTAIL code. These simulations can be computationally very demanding due to the multi-scale nature of this kind of problems. Hence, a dedicated parallelization layer (PyPARIS) has been recently developed to profit of parallel computing resources in order to significantly speed-up the computation.
PB - JACoW
CP - Geneva, Switzerland
SP - 3803
EP - 3806
KW - simulation
KW - electron
KW - interface
KW - hadron
KW - toolkit
DA - 2017/05
PY - 2017
SN - 978-3-95450-182-3
DO - 10.18429/JACoW-IPAC2017-THPAB043
UR - http://jacow.org/ipac2017/papers/thpab043.pdf
ER -