JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for MOPVA020: S2E Simulation of an ERL-Based High-Power EUV-FEL Source for Lithography

TY - CONF
AU - Nakamura, N.
AU - Hajima, R.
AU - Hotei, T.
AU - Kato, R.
AU - Miyajima, T.
AU - Shimada, M.
ED - Schaa, Volker RW
ED - Arduini, Gianluigi
ED - Pranke, Juliana
ED - Seidel, Mike
ED - Lindroos, Mats
TI - S2E Simulation of an ERL-Based High-Power EUV-FEL Source for Lithography
J2 - Proc. of IPAC2017, Copenhagen, Denmark, 14–19 May, 2017
C1 - Copenhagen, Denmark
T2 - International Particle Accelerator Conference
T3 - 8
LA - english
AB - An energy recovery linac(ERL)-based free electron laser(FEL) is a possible candidate of a high-power EUV source for lithography. The ERL can provide a high-current and high-quality electron beam for the high-power FEL and also greatly reduce the dumped beam power and activation compared to ordinary linacs. An ERL-based EUV-FEL source has been designed using available technologies and resources*. For this design, we perform Start-to-End(S2E) simulation from the electron gun to the exit of the decelerating main linac to track the electron beam parameters and to evaluate the FEL performance. The electron bunches from the injector are off-crest accelerated to 800 MeV and compressed in the 1st arc and/or chicane to obtain a high-peak current for high FEL output. After the undulator section for SASE FEL, they are decompressed in the 2nd arc and then decelerated in the main linac to optimize the energy spread or the energy recovery efficiency. This paper will present the S2E simulation for the designed EUV-FEL source.
PB - JACoW
CP - Geneva, Switzerland
SP - 894
EP - 897
KW - FEL
KW - linac
KW - electron
KW - simulation
KW - injection
DA - 2017/05
PY - 2017
SN - 978-3-95450-182-3
DO - 10.18429/JACoW-IPAC2017-MOPVA020
UR - http://jacow.org/ipac2017/papers/mopva020.pdf
ER -