

Industry Role for Advanced Accelerator R&D Rolland P. Johnson Muons, Inc. (http://www.muonsinc.com/)

- Besides the large research institutes that typically focus on fundamental research, industrial companies can also contribute to the development of advanced technology and applications of accelerators.
- This talk discusses the role of (smaller US) industrial companies in the field of accelerators and presents examples of advanced R&D.
- In 15 mintes, I can only describe what has been done in the USA
 - A funding model that may be unique among countries in the world
- But the bottom line is that there is no role if there is no funding

SBIR-STTR Process

- US Congress taxes the operating budgets of all cabinet-level Departments (~3%) (Energy, Transportation, Homeland Security, Defense, etc.)
 - To fund Small Business Innovation & Tech Transfer Research (SBIR-STTR)
 - Originally, because small businesses were more innovative than gov orgs
 - More recently, because they want small businesses to help job growth
- Each year, each Department gives a Funding Opportunity Announcement (FOA)
 - Stating what topics small businesses should propose for grants
 - According to the needs of the Department
- In the Department of Energy, where most accelerator R&D is done,
 - Small companies (<500 employees) submit proposals for SBIR-STTR grants
 - Which can have labs or universities as research partners
 - That get reviewed by 4 (3 technical + 1 commercialization) experts
 - For a 9 month \$150,000 phase I grant to show the proposal is valid
 - 1 in 5 phase I proposals are granted
 - If it is valid, you can propose a 2-year project (up to \$1M)
 - That is reviewed by (probably) the same 4 reviewers
 - 1 in 2 phase II proposals are granted

- For 14 years, Muons, Inc.
 - has been funded by DOE Contracts and SBIR-STTR grants
 - to invent and develop tools and technology for particle accelerators
 - with eight US university and nine national lab research partners
- · Large US companies do little fundamental research on accelerator technology
 - Some larger companies work with small ones under SBIR-STTR grants
- Example 1 Muon beam cooling for a Muon Collider
 - next energy frontier machine to follow the LHC and Higgs boson factory
- Example 2 Designing a new Accelerator-Driven Subcritical Nuclear Reactor
 - Based on SRF proton accelerators and spallation
- Example 3 Designing an ERL to make commercial radioisotopes
 - Photoproduction using thin radiator and external target

Completed Muons, Inc. Projects

Year	Completed Projects	SBIR-STTR	Research Partner	Phase III
2002	Company founded	Funds		
2002-5	High Pressure RF Cavity	\$600,000	IIT (Kaplan)	\$445,000
2003-7	Helical Cooling Channel	\$850,000	JLab (Derbenev)	\$3,100,000
2004-5	MANX demo experiment	\$95,000	FNAL (Yarba)	\$22,230
2004-7	Phase Ionization Cooling	\$745,000	JLab (Derbenev)	
2004-7	H2Cryostat - HTS Magnets	\$795,000	FNAL (Yarba)	\$1,400,000
2005-8	Reverse Emittance Exch.	\$850,000	JLab (Derbenev)	
2005-8	Capture, ph. Rotation	\$850,000	FNAL (Neuffer)	\$198,900
2006-9	G4BL Simulation Program	\$850,000	IIT (Kaplan)	\$8,732,479
2006-9	MANX 6D Cooling Demo	\$850,000	FNAL (Lamm)	\$495,630
2007-10	Stopping Muon Beams	\$750,000	FNAL (Ankenbrandt)	\$410,488
2007-10	HCC Magnets	\$750,000	FNAL (Zlobin)	\$255,000
2007-8	Compact, Tunable RF	\$100,000	FNAL (Popovic)	\$23,400
2008-9	Rugged RF Windows	\$100,000	JLab (Rimmer)	
2008-9	H2-filled RF Cavities	\$100,000	FNAL (Yonehara)	\$23,400
	Completed Projects	\$8,285,000		\$15,084,297

Muons, Inc. Completed Muons, Inc. Projects

Year	More completed projects	Funds	Research Partner	Phase III
2008-12	Pulsed Quad RLAs (NFE)	\$850,000	JLab (Bogacz)	
2008-12	Fiber Optics for HTS (NFE)	\$800,000	NCSU (Schwartz)	
2008-13	RF Breakdown Studies	\$850,000	LBNL (Li) ANL (Gai)	
2009-12	HOM Absorbers	\$850,000	Cornell (Hoffstaetter)	
2009-13	Quasi Isochronous HCC	\$850,000	FNAL (Neuffer)	\$198,900
2009-10	DC Gun Insulator	\$100,000	JLab (Poelker)	
2009-13	H-minus Sources	\$850,000	ORNL/SNS (Stockli)	
2009-13	Hi Power Coax Coupler	\$850,000	JLab (Rimmer)	
2009-10	Hi Field YBCO Magnets	\$100,000	NCSU (Schwartz)	
2009-13	Φ & f–locked Magnetrons	\$850,000	FNAL (Popovic)	\$198,900
2010-11	ps detectors for MCDE	\$100,000	U Chicago (Frisch)	
2010-11	Crab Cavities	\$100,000	JLab (Rimmer)	
2010-11	MC detector bkgnds	\$100,000	NIU (Hedin)	
2010-13	Epicyclic PIC	\$850,000	JLab (Derbenev)	
	Projects In Progress	\$8,100,000		\$397,800

U,

	More Completed Muons	Inc. Projects		
2011-12	Adjustable Coax Coupler	\$100,000	ANL (Nassiri)	
2011-12	SAW Photoinjector	\$100,000	JLab (Poelker)	
2011-12	2-Stage Magnetron	\$100,000	FNAL (Yakovlev)	\$23,400
2011-12	Efficient H-minus Source	\$100,000	FNAL (Bollinger)	\$23,400
2011-12	Achromatic Low Beta	\$100,000	JLab (Derbenev)	
2011-14	FiberOptic Quench Detection	\$1,100,000	NCSU (Schwartz)	
2012-13	Ribbon e Beam Monitor	\$100,000	ORNL/SNS (Aleksandrov)
2012-13	RF Photoinjector Cavity	\$100,000	JLab (Rimmer) LBL(Li)	MuPlus
2014	Bi2212 30T Solenoid	\$150,000	FNAL(Shen)	
	SBIR-STTR Projects			
2011-14	FRIB Separator Magnet	\$1,100,000	BNL (Gupta)	
2011-14	HCC Engineering Design	\$1,100,000	FNAL (Yonehara)	\$23,400
2012-15	S-Band RF Load	\$1,100,000	SLAC (Krasnykh)	
2012-15	Complete Cooling Channel	\$1,100,000	JLab (Derbenev)	MuPlus
2013-17	High MTBF Magnetron	\$1,150,000	JLab(Wang)	
2014-16	H-minus source	\$1,150,000	ORNL/SNS (Stockli)	
		\$8,150,000		

Contracts with National Labs

		Fliase III
2009-10 Mono-E Photons	2 contracts w PNNL	\$172,588
2009-10 Project-X and MC/NF	contract w FNAL	\$260,000
2009-10 MCP and ps timers	contract w ANL	\$108,338
2010 MAP - L2 mngr	2 contracts w FNAL	\$55,739
2010 805 MHz RF Cavity	contract w LANL	\$230,000
2012 MAP - L2 mngr	contract w FNAL	\$40,000
2012 PX cooling for Mu2e	contract w FNAL	\$75,490
2012 g-2	contract w FNAL	\$40,160
2012 ACE3P 12 GeV Upgrade Studies	contract w JLab	\$50,000
2013 MAP, L2, MASS, G4beamline	contract w FNAL	\$115,000
2014 Parmela Simulations	contract w Niowave	\$50,000
2014 MAP, L2, MASS, G4beamline	contract w FNAL	\$125,000
2015 Mu2E MuSim Support	contract w FNAL	\$230,000
2015 Magnetron power source feasibility	contract w Toshiba	\$30,000
		\$1 582 315

Dhace III

More People

Under SBIR-STTR grants, Muons, Inc. supported or is supporting <u>8</u> <u>full-time junior Ph. D. accelerator scientists</u> directly (Drs. Mohammad Alsharo'a,

Kevin Beard, Gene Flanagan, Pierrick Hanlet, Masahiro Notani, David Newsham, Kevin Paul, and Cary Yoshikawa).

and <u>seven indirectly through subgrants</u>, at Fermilab, JLab, IIT, NCSU, LBNL and ODU (Drs. Katsuya Yonehara, Shahid Ahmed, Guimei Wang, Vasiliy Morozov, Frank Hunte, Dan Bowring, Amy Sy).

Muons, Inc. supports Ph. D. students working on our projects: Ms. Mahzad BastaniNejad and Ms. Ana Samolov at ODU, Ms. Melanie Turenne at NCSU, and Mr. James Maloney at NIU. Other potential Ph. D. students are considering working on our projects as thesis topics. Melanie and Ana completed all requirements and received their Ph.D.s in 2012! Jim defended his this thesis in 2014.

Principal Investigator collaborators for our subgrants at national labs and universities amplify our company strengths:

(e. g. Derbenev-JLab, Yarba-FNAL, Schwartz-NCSU, Hoffstaetter-Cornell, Neuffer-FNAL, Kaplan-IIT, Rimmer-JLab, Li-LBNL, Gai-ANL, Stockli-ORNL, Frisch-Uchicago,...)

Muon Collider Conceptual Layout

Project X

Accelerate hydrogen ions to 8 GeV using SRF technology.

Compressor Ring Reduce size of beam.

Target

Collisions lead to muons with energy of about 200 MeV.

Muon Cooling

Reduce the transverse motion of the muons and create a tight beam.

Initial Acceleration In a dozen turns, accelerate muons to 20 GeV.

Recirculating Linear Accelerator in a number of turns, accelerate muons up to 2 TeV using SRF technology.

Collider Ring

Located 100 meters underground. Muons live long enough to make about 1000 turns.

Muons, Inc. Muon Beam Cooling

New concepts for muon ionization cooling, Physical designs in progress Sufficient beam cooling for a Higgs factory and Energy Frontier Muon Collider that fits on Fermilab site The ideas that are basic to the prototype being designed are <u>new</u> for this millennium:

Hydrogen-pressurized RF cavities, doped with oxygen, modified to fit inside strong superconducting magnet coils,

Helical Ionization Cooling theory using Siberian snake fields in Helical Solenoid magnets, generating 6d cooling using emittance exchange with a continuous homogeneous absorber

Muons, Inc. Ultimate Goal – after the LHC:

High-Energy High-Luminosity Muon Colliders

- precision lepton machines at the energy frontier
- achieved in physics-motivated stages that require developing inventions and technology, e.g.
 - MANX
 - demonstrate HCC, HS, & EEX concepts
 - high-intensity proton driver
 - simultaneous intense muon beams
 - stopping muon beams
 - useful 6D cooling w HCC, EEX
 - neutrino factory
 - HCC with RF, RLA in CW Proj-X
 - Z' factory
 - low Luminosity collider, HE RLA
 - <u>Higgs factory</u>

- extreme 6D cooling, low beta, super-detectors
- energy-frontier muon collider
 - more cooling, lower beta

(a new version is in the works) (based on a prototype HCC segment) Needed for GEM*STAR

Mu2E Contract w FNAL

A wedge or continuous absorber combined with magnetic dispersion can be used for emittance exchange

Figure 1. Use of a Wedge Absorber for Emittance Exchange Figure 2. Use of Continuous Gaseous Absorber for Emittance Exchange

Ionization Cooling is only transverse. To get 6D cooling, emittance exchange between transverse and longitudinal coordinates is needed.

Muons, Inc. Particle Motion in a Helical Magnet

Combined function magnet (invisible in this picture) Solenoid + Helical dipole + Helical Quadrupole

Red: Reference orbit Blue: Beam envelope

Dispersive component makes longer path length for higher momentum particles and shorter path length for lower momentum particles.

Opposing radial forces $F_{h-dipole} \approx p_z \times B_{\perp}; \quad b \equiv B_{\perp}$

$$F_{solenoid} \approx -p_{\perp} \times B_z; \quad B \equiv B_z$$

Transforming to the frame of the rotating helical dipole leads to a time and z – independent Hamiltonian

b' added for stability and acceptance

IPAC16 Busan

Hardware Development

- Helical Solenoid invention to get HCC fields
 - 4-coil NbTi HS model tested (1st 6d HCC segment)
 - 6-coil YBCO HS model tested (last 6d HCC segment)
- High Pressure H₂ Cavity development
 - Test cell shows no HV max dependence on external B
 - First beam tests show agreement with models
 - No RF breakdown
 - Ionization electrons move far enough to heat H₂ reduce Q

14

• Mitigated with 0.01% SF₆ dopant

• Oxygen shown to be a good dopant with less corrosion May. 11, 2016 IPAC16 Busan

Helical Magnet

Helical solenoid magnet

Coil center follows on the helical reference trackIt generates proper helical dipole + field gradient

• By modulating the coil position, it can make a beam adapter to connect between straight and helical magnet sections.

- Helical solenoid magnet generates more uniform field than analytical field.
- It means that helical solenoid magnet has larger acceptance than analytical one.

Mucool Test Area (MTA) at FNAL

Multitask work space to study RF cavity under strong magnetic fields & by using intense H⁻ beams from Linac

First results HPRF cavity in beam

400 MeV H⁻ beam
Beam pulse length 7.5 μs
5 ns bunch gap
10⁹ H⁻/bunch
18 % of transmission in collimator system

• 1.8 10⁸ protons/bunch reaches to the cavity May. 11, 2016 IPAC16 Busan

Muons, Inc.	Table I: 6-segment HCC as simulated by G4beamline										
	segment	Z	b	db/da	B	λ	v	ε _T	ε _L	€ _{6D}	μ/µ _ι
		m	Т	T/m	Т	m	MHz	mm	mm	mm^3	%
C Alexandina is and	start	0	1.3	-0.5	-4.2	1	325	20.4	42.8	12,900	100
<u>G4beamine</u> is our	1	40	1.3	-0.5	-4.2	1	325	5.97	19.7	415.9	92
program that	2	49	1.4	-0.6	-4.8	0.9	325	4.01	15	108	86
interfaces to	3	129	1.7	-0.8	-5.2	0.8	325	1.02	4.8	3.2	73
GEANT4	4	179	2.6	-2	-8.5	0.5	650	0.58	2.1	2	66
Vou con download	5	203	3.2	-3.1	-9.8	0.4	650	0.42	1.3	0.14	64
rou can dowilload	6	233	43	-5.6	-14.1	0.3	650	0.32	1	0.08	62

it for free at muonsinc.com

<u>1 mm = 4 MeV</u> Higgs boson width

May. 11, 2016

18

Magnetron Power Sources

- Magnetron is a good RF source for HCC RF
 - Inexpensive (<\$2/W vs \$5 to \$10/W for klystron or IOT)
 - Efficient (~85% vs 50-60% for klystron or IOT)
 - Frequency and phase stabilization are an issue for accelerators
 - Muons, Inc. has several relevant projects underway that are relevant to muon cooling
 - 350 MHz CW 120 kW for radioisotope production
 - 650 MHz for medical application
 - 1500 MHz for CEBAF klystron replacement

Ų

EDM of 350 MHz Magnetron Anode

May. 11, 2016

US Industry can take nuclear waste or excess plutonium and produce energy from it

- Molten-salt Reactor Experiment (MSRE) 1965-1969
 - continuous purging of volatile radioactive elements no zircaloy
- Accelerator-Driven Subcritical Reactors (ADSR)
 - reactor concept uses molten salt <u>fuel</u> (e.g. UF₄, ThF₄, or PuF₃)
 - GEM*STAR
 - Avoids nuclear weapon proliferation concern of reprocessing for 200 years
- The next step is a prototype ADSR machine to inspire industry
- Inexpensive natural gas changes things in the US
 - New Nuclear Power cannot compete with 4.5 c/kW-h from natural gas
 - ADSR process heat can make synthetic diesel out of natural gas and carbon
- GEM*STAR technology can
 - Turn excess weapons-grade plutonium into process heat,
 - with remnants useless for weapons,
 - to provide the DOD with inexpensive, green diesel fuel

- An intrinsic safety problem for conventional reactors is enclosed solid fuel.
- a natural solution is to use molten-salt fuel
- that is also well suited to accelerator-driven subcritical reactors.
 - A major difficulty is fatigue of UO₂ fuel in rods caused by accelerator trips – no such problem for molten salt fuel
- The technology of molten-salt fuel was developed in the 1960s in the Molten-Salt Reactor Experiment (MSRE) at ORNL.
 - Use of molten salt fuel was later abandoned
 - not enough Pu-239 for bombs?
 - President Nixon?

(See MSRE on wikipedia for nice summary)

Molten-salt Reactor Experiment

May. 11, 2016

IPAC16 Busan

Invent the Future

Molten Salt Eutectic Fuel

Uranium or Thorium fluorides form eutectic mixture with ⁷LiF salt.

High boiling point \rightarrow low vapor pressure

GEM*STAR

23

New Accelerator Technology Enables GEM*STAR

OAK RIDGE, Tenn., Sep. 28, 2009 — The Department of Energy's 1 GeV Spallation Neutron Source (SNS), breaks the one-megawatt barrier! Operating at <10% duty factor, this corresponds to >10 MW at CW. Based on Superconducting RF Cavities, available from U.S. Industry:

GEM*STAR Consortium ADNA &

31

Muons, Inc. MuSim MCNP6 single event display

Here is a single event, green=neutron, darkgreen=gamma. This single proton generated 402,138 tracks (not counting e-< 0.5MeV). I used a "transparency slider" to make the solids mostly transparent, so tracks inside them can be seen. This makes the solids darker, because the black background show through; tracks inside them affect their color.

ERL for Radioisotope Production

Higher energy electron beams allow radioisotopes not yet studied for new applications. The ERL can reduce energy cost per gram of isotope produced by more than factor of 3 May. 11, 2016 IPAC16 Busan 28

Industry Role for Advanced Accelerator R&D Conclusions

- The SBIR-STTR model to support smaller industries to participate in advanced accelerator R&D can be very productive
 - especially when leveraged by people and infrastructure from national labs and universities
- The lab and university partners benefit from being pushed to think out of the box
 - the SBIR-STTR funds give them a budget code to allow this!
- Very creative and competent accelerator scientists in industry can be involved in
 - accelerator problems of national and global significance –
 - for everyone's benefit