Shanghai(Soft) X-ray Free Electron Laser (SXFEL) Status and perspectives

Dong Wang For SXFEL team, SINAP, CAS

IPAC2016, Busan, Korea May 10, 2016

Outline

- Introduction
- SXFEL, Test Facility
- SXFEL, User Facility Project
- Remarks

Introduction

SINAP: a photon science center at Shanghai

X-ray Free Electron-Laser

3.5 GeV 3rd gen. light source open since 2009, over 10000 users 13 beamlines in operation 20+ to come in 2016-2022

IS SAME

XFEL and SR: complementary

DESY, Germany

PAL, Korea

ELETTRA, Ital

SINAP, China

1.5-15 Å

Spring-8, Japan

SACLA

Injector (35°)

PSI, Switzerland

Linac Coherent Light Source at SLAC X-FEL based on last 1-km of existing linac

Existing 1/3 Linac (1

SLAC, US/

SXFEL: Project Scope

• 'phased' project

1, SXFEL Test Facility

Schedule:	2014.12 ~ 2017.12, under construction
Budget:	\$35M
Design goals:	~300m tunnel, 840 MeV linac, 8.8nm seeded FEL
Source:	national funding agency

2, SXFEL User Facility (soft x-ray)

Schedule:	2016.7 ~ 2018.12, officially approved
Budget:	~\$110M (80M for SINAP)
Design goals:	add 250mx50m FEL and experiment halls,
	upgrade to1.6 GeV, ~2 FELs, 4~5 stations
Source:	local and national funding agencies

3, SXFEL extend to hard x-ray

Design goals: 5~6 GeV linac, multi-FELs cover 0.1nm ~ 10nm

Goals of Test Facility

- Prototype for (hard) x-ray FEL user facility
 - key technologies and components
- Novel XFEL principle/operation-mode researches
 - mainly seeded FEL (HGHG, EEHG, cascade, etc.)
- As part of future XFEL (linac tunnel)

Linac and FEL layout

Test Facility parameters

Photo-injector

Main linac

Bunch charge (nC)	0.5	Bunch charge (nC)	0.5
Beam energy (MeV)	129.4	Beam energy (GeV)	0.84
Pulse length (ps, FWHM)	9	Bunch length (ps, FWHM)	≤ 1.0
Normalized emittance	<0.95	Norm. emittance (mm.mrad)	< 2.0
(mm.mrad, rms)	-0.00	Energy spread (rms)	< 0.15%
Energy spread (rms)	< 0.14%	Rep-rate (Hz)	1-10
Rep-rate (Hz)	1-10	Peak current (A)	≥ 500

FEL

	Baseline		Water-window
	(8.8nm)		(~2 nm)
Scheme	HGHG-HGHG	EEHG-HGHG	HGHG-HGHG
Harmonics	6 × 5	6 × 5	14 × 6
Beam energy	840MeV	840MeV	1600MeV
FEL wavelength	8.8nm	8.8nm	~3nm
FEL pulse	< 100fs	<100fs	< 100fs
FEL power	>100MW	>100MW	~ 100MW

Machine layout in tunnel

Linac section (~140m)

EEHG-HGHG cascade @SXFEL test facility

Echo(EEHG)-30 @ test facility

- □ Mitigate the jitter problem and improve the output stability
- □ More photons per pulse
- Narrower bandwidth

• C. Feng and Z.T. Zhao, Chin. Sci. Bull. 55, (2010) 221

Diagnostic beamline

Civil construction of SXFEL

Civil constructions

SXFEL Tunnel, 2016.4

Building and utility are ready for installation

Main components

- A series of prototypes were carried out in past year. ۲
- Now most components are under mass production. •

Injector

Undulator

Beam diagnostics

Diagnostics beam line

Accelerating tube

Mechanical & Vacuum

Photo-cathode gun (by Tsinghua University)

- □ New cathode sealing to reduce RF breakdown
- □ Asymmetric vac port and quad port to reduce n
 - Dipole: 10⁻² ↓ Quadrupole: 10⁻³↓ Quad hole Waveguide hole Vac hole Quad hole

Higher QO, RF heating lowered by 20%
Larger mode separation, zero mode reduction by

Parameters	Value	Unit
PI mode frequency	2856	MHz
Quality factor Q ₀	14000	
Coupling factor β	1.3	
Electric field on cathode	120	MV/m
RF pulse width	1.7	μs
Repetition rate	10	Hz
Peak power of wall heat loss	9.4	MW
Input RF peak power	11.3	MW
Cathode material	Copper	
QE	4 × 10 ⁻⁵	
dark current at 120 MV/m	< 250	pC/pulse

Gun test result, drive laser hutch

C-band structure

C-band prototype: 1.8m structure and SLED

Beam test for c-band unit

输出能量

150.9

3.49 E 1

150.9eV

Warnin a

Mar Hughlowskin

High power test with e- beam at SDUV : ~50 MV/m

- 束流注入C波段加速管能量为87.6MeV,最大输出能量为170.8MeV, 能量增益83.2MeV,加速结构有效加速长度为1.638米,因此最大加 速梯度为50.8MV/m.
- 通过扫描充电电源25kV至37kV,SLED功率输出对应为63MW至 145MW,实际束流测量获得的加速梯度为25.9MV/m至50.8MV/m, 与高功率测试结果基本吻合。
- 为防止出现高能量初出现分析铁饱和现象,导致测量误差,故将注入能量分别降低至66MeV和51.92MeV,分别测量145MW峰值功率 束流能量,分别为150.9MeV和135.3MeV,分别对应能量增益为 84.83和83.38,与之前的测量结果一致,因此可以证明之前的 170.8MeV没有进入饱和区,测量结果是有效的。

 $E(^{MV}/_{M}) = 4.27\sqrt{Peak Power (MW)}$

Movable chicane in linac

- 0~7 degrees bending angles
- Rotating frame & movable platform
- Dipole、Profile、slit、SBPM、 correctors、ion pump、bellows, flanges and supports

Undulator unit

BBA movable platform

Undulator & magnets productions

Undulator Phase shifter Quads Focusing coil

Cavity BPM (CBPM)

CBPM東流实验@SDUV FEL

探头结构及工艺设计

RF前端

RF signals

Productions

Magnet supports

Issues: overlaps with DCLS project

SXFEL user facility project: Just approved

- New funding for upgrade to user facility with \$110M.
- Build undulator/experiment halls and increase beam energy.
- Jointly with Shanghai Tech Uni.(responsible for user stations)

Project duration: 30 months

Test facility

\$35M, 300m, 0.84GeV

Upgrade to an user facility \$110M, 250m undulator/exp. Halls Higher energy, undulator lines Beamlines/exp. stations

User Facility Parameters

Parameters	Test Facility	User FEL1	User FEL2	Unit
Output Wavelength	9	2~10	1.2-3	nm
FEL type	HGHG-	HGHG-	SASE	
	EEHG	EEHG	Self-seeding	
Bunch charge	0.5~1	~0.5	~0.2	nC
Beam Energy	0.84	1.0-1.6	1.0-1.6	GeV
Energy spread	0.1~0.15%	0.1~0.15%	0.1~0.15%	
Energy spread (sliced)	0.02%	0.02%	0.02%	
Normalized emittance	<2.0	<1.0	<0.5	mm.mrad
Pulse length (FWHM)	~0.5	0.03 -1	0.03-1	ps
Peak current	~0.5	0.7	0.7	kA
Rep. rate	1~10	10-50	10-50	Hz

Machine layout: test facility to user facility

Machine upgrade for user facility

FEL1: seeded @2~3nm

First stage

Second stage

Possible echo-150 @SXFEL user facility

To generate coherent radiation in the "water window" and beyond
Test the harmonic up-conversion limit of a single stage EEHG

• K.S. Zhou, C. Feng and D. Wang, to be submitted.

FEL2: SASE@1~2nm, newly built self-seeding and other schemes being considered

New buildings (undulator & exp. Halls)

Remarks

- SXFEL Test Facility project is going OK so far despite of very tight budget and schedule.
- Still tough challenges ahead in installation and commissioning stages for interferences with other projects.
- Soft x-ray FEL user facility got approved, which is a major step forward and foundation for the future.

