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From Conception ...

VoLuME 43, NUMBER 4 PHYSICAL REVIEW LETTERS 23 Jui

Laser Electron Accelerator

T. Tajima and J. M. Dawson
Department of Physics, Univevsity of California, Los Angeles, California 90024
(Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the
action of the nonlinear ponderomotive force. Electrons trapped in the wake can be ac-
celerated to high energy. Existing glass lasers of power density 10'®W/cm? shone on plas-
mas of densities 10'® cm™3 can yield gigaelectronvolts of electron energy per centimeter
of acceleration distance. This acceleration mechanism is demonstrated through computer
simulation. Applications to accelerators and pulsers are examined.

VOLUME 54, NUMBER 7 PHYSICAL REVIEW LETTERS 18 FEBRUARY 1985

Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma

Pisin Chen®)
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

J. M. Dawson, Robert W. Huff, and T. Katsouleas
Department of Physics, University of California, Los Angeles, California 90024
(Received 20 December 1984)

A new scheme for accelerating electrons, employing a bunched relativistic electron beam in a
cold plasma, is analyzed. We show that energy gradients can exceed 1 GeV/m and that the driven
electrons can be accelerated from yomc? to 3yomc? before the driving beam slows down enough to
degrade the plasma wave. If the driving electrons are removed before they cause the collapse of the
plasma wave, energies up to 4~/€)mc2 are possible. A noncollinear injection scheme is suggested in
order that the driving electrons can be removed.

PACS numbers: 52.75.Di, 29.15.—n
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FACET project history
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Primary Goal:

* Demonstrate a single-stage high-energy plasma
accelerator for electrons

Timeline:
e CD-0 2008
e CD-4 2012, Commissioning (2011)
e Experimental program (2012-2016)

A National User Facility:
* Externally reviewed experimental program
» 150 Users, 25 experiments, 8 months/year operation

Key PWFA Milestones:
v Mono-energetic e- acceleration
v High efficiency e~ acceleration
v First high-gradient e* PWFA
* Demonstrate required emittance, energy spread (FY16)

The premier R&D facility for PWFA: Only facility capable of e+ acceleration
Highest energy beams uniquely enable gradient > 1 GV/m
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FACET: acceleration of beams
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FACET PWFA Milestones (V. Yakimenko, Dec. 7, 2012)

=1 AR
T AN

2 beam generation, laser commissioning,
2013 2/1 -6/30 2 beams with laser-> mono energetic acceleration
(all successful and more...)

2 beams with laser-> mono energetic acceleration,
2014 10/15-12/20 positron commissioning, positron PWFA, high
2/1-6/30  brightness PWFA injector (all successful &
positrons!)

10/15-12/20 positron PWFA, one stage, efficiency, high brightness
2015 PWFA injector (successful - unexpected positrons
2/1 -6/30 result!)

2016 4/4 Finalizing the program, emittance preservation
10/1ﬁ8‘r (Single stage: energy spread, emittance, efficiency)

Steady, methodical progress according to plan
IPAC’16, V. Yakimenko, May 10, 2016




FACET: A National User Facility Based on High-energy
Beams and Their Interaction with Plasmas and Lasers

Plasma Wake Imaging
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FY16 Experimental Progress at FACET

M E210 - Trojan Horse Plasma Wakefield
Acceleration 29%

M E217 - lonization and down-ramp injection
proposal by the E200 team 22%

M E201 - Wakefield Acceleration in Dielectric
Structures 19%

M E200 - Multi-GeV Plasma Wakefield
Acceleration Experiments 11%

M E204 - Proposal for testing of metallic
structures periodic structures at FACET 6%

M E215 - High-quality witness bunch generation
and acceleration 5%
E216 - Single Shot Femtosecond Beam Pulse
Length Measurements 4%
E224 - Visualization of electron-driven plasma
wakefield accelerators 3%
E213 - Temporal Limits of Electron-Phonon
Interactions 1%

Torch
Injection

E210
IPAC’16, V. Yakimenko, May 10, 2016
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Development of High-Brightness Electron Sources

LCLS Style Photoinjector
* 100MeV/m field on cathode
e Laser triggered release

* ps beams - multi-stage compressions &
acceleration

- Tricky to maintain beam quality UV laser

(CSR, microbunching...)

e
Electron beam

Plasma Photoinjectors
* 100 GeV/m
river  fs beams, uym size
S-ean * Promise orders of magnitude improvement
in emittance
* Injection from: TH, lonization, DDR, CP...

fa Heelectronwl1esmls
IPAC’16, V. Yakimenko, May 10, 2016
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E210: Trapped charge VS relative Time of Arrival
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What about positrons

No Plasma Plasma
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Experiments at SLAC FFTB in 2003 showed that the positron beam was
distorted after passing through a low density plasma.

IPAC’16, V. Yakimenko, May 10, 2016



Positron acceleration summary
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An exciting decade of fast experimental progress
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/d FACET-II

Facility for Advanced Accelerator Experimental Tests

FACET-II Plan

CI')

H‘.
Timeline:

10GeV, 2nC, 10pm?, e- & e*

eNov. 2013, FACET-Il proposal, Comparative review
*CD-0 Aug. 2015

*CD-1 Oct. 2015, ESAAB Dec. 2015
«CD-2/3A  Sep. 2016

*CD-3B Mar. 2017

«CD-4 2022

e Experimental program (2019-2026)

* Sector 20

Experimental Area
y  — e

Key R&D Milestones:
» Staging with witness injector

» High brightness beam generation, preservation,
characterization

e e* acceleration in e- driven wakes
* Generation of high flux gamma radiation

Three stages:

* Photoinjector (e- beam only) FY17-19
ee+ damping ring (e+ or e- beams) FY18-20
* “sailboat” chicane (e+ and e- beams)

FACET-Il will enable research for a broad User Community
15
IPAC’16, V. Yakimenko, May 10, 2016




Facility for Advanced Accelerator Experimental Tests

/d FACET-II

FACET-Il Stage | FY17-18
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* Goal: deliver compressed electron beam to experiments in S20

« Major upgrade: Electron beam photoinjector in Sector 10
« Scope: Injector, Shield wall in S10, X-band linearizer, Bunch Compressors

in S11 (BC1) and S14 (BC2), beam diagnostics, upgrade to experimental

darea

X-band
Lineari%er BC1 BC2E

B B
=2 G Final Focus &
Experimental Area
SLAC linac tunnel (Sectors 10 — 19) W-Chicane Sector 20
k\\ Aline
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/d FACET-II

Facility for Advanced Accelerator Experimental Tests

FACET-II Stage 1IFY18-20

e AN

N

 Goal: deliver compressed positron beam to experiments in S20

* Major upgrade: positron damping ring
« Scope: damping ring, positron bunch compressor & return line

X-band
Lineari%er BC1 BC2E

o o .

~ o Final Focus &
Experimental Area

BC2P
W-Chicane
BCO
Positron Production & Return Line Sector 14 Return Line Acceleration
<
Sector 20

SLAC linac tunnel (Sectors 10 — 19)
TUPMBO021
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/3 FACET-II

Facility for Advanced Accelerator Experimental Tests

FACET-II Stage lll

e AN

N

* Goal: deliver electron and positron beams to experiments in S20

« Major upgrade: Sailboat chicane
« Scope: Sailboat chicane

X-band
Lmearl%er BC1 BC2E Sailboat Chicane

o o .
~ o Final Focus &
Experimental Area
BC2P
W-Chicane
BCO
Positron Production & Return Line Sector 14 Return Line Acceleration
<
Sector 20

SLAC linac tunnel (Sectors 10 — 19)
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FACET-ll Science Opportunities Workshops:

SLAC NATIONAL ACCELERATOR LABORATORY

Home Representatives from:
Agenda * DESY, FNAL,INFN, IST,
JAI, LBNL, Oslo, MPP,
SLAC, Strathclyde, UCLA

FACET-II CDR

Participants

Register

Accommodations

101 200

FACET-II
Science Opportunities Workshops >

12-16 October, 2015 % ¥
SLAC National Accelerator Laboratory

Travel and Directions

Meeting Rooms & Maps

g
8

Energy (7)
2
Energy (y)

3

~4

95

Menlo Park, CA ~420  -210 f(zm w0 a0 ~a0 210 f(;m 0 a0
FACET-II Science Opportunities
October WOI'kShOpS
Piet M i (UCLA October 12-16, 2015
Monday ;irr(;n gulizr:: gc I((SLAC)) Accelerator Physics of Extreme Beams
SLAC National Accelerator Laboratory
loan Tudosa (U. Penn.) . . . ,
Tuesday Jerome Hastings (SLAC) Material Interactions with Extreme Fields

Menlo Park, CA

Andrei Seryi (JAI) . . .
Wednesday Jean-Pierre Delahaye (SLAC) Plasma Acceleration Based Linear Colliders

Plasma density (8.0 x 106 cm™)
-5 —4 -3 -2 -1

Thursday Jarréerislz( Ezsrﬁgiige(gl_(xg)LA) Plasma Acceleration Based XFELs %i/#o 3
Friday Vlad"g;:‘s'granag glt_?é;)rmk) Application of Compton Based Gamma Rays i /;;0’";‘0\ »

& (um)

https://portal.slac.stanford.edu/sites/conf public/facet ii wk 2015/Pages/Tabbed-Agenda.aspx o
IPAC’16, V. Yakimenko, May 10, 2016




