LA-UR-16-22841

Operation of LANSCE Linear Accelerator with Double Pulse Rate and Low Beam Losses

Yuri K. Batygin, Jeffrey S. Kolski, Rodney C. McCrady, Lawrence J. Rybarcyk

Los Alamos National Laboratory, NM 87545, USA

IPAC 16

10 May 2016

The LANSCE accelerator provides unique flexible time-structured beams from 100 to 800 MeV

Slide 2

LANSCE Facility Overview

Beam Losses in Linear Accelerator

Drift Tube Transition Linac Region

Coupled- Cavity Linac (100 MeV – 800 MeV)

0.75 – 100 MeV LDCM **RICM1** -98.5 **BICM2** SRIR1P1 SRCM TRAPS 1 RCM 1234 1234567 5 48 1 R1 2 R1 43 NORM NORM NORM NORM NOBM NORM NORM NORM NORM NOR NORM -10% -10% -10% -10% -10% -10% -10% -10% -10% -109 NORM NORM

Linac loss monitors (Activation devices): liquid Protection scintillator and photomultiplier tube, calibrated against 100 nA point spill. Average beam losses are 0.1 – 0.2 W/m.

37.5

TRAP9

Year	Pulse Rate (Hz)	Summed Loss Monitor Reading (A.U.)
2015	120	135
2014	60	211
2013	60	190
2012	60	183
2011	60	167

86.6

LNAP3

66

67

LNAP:

5

4

LA2 XD1 XD

EXH

33

13

Beam Losses in Proton Storage Ring (PSR)

Year	PSR	PSR Beam
	Pulse	Losses
	Rate	(%)
	(Hz)	
2015	20	0.13
2014	20	0.24
2013	20	0.23
2012	20	0.26
2011	20	0.24

- 1. Misalignments of accelerator channel components
- 2. Transverse-longitudinal coupling in RF field
- 3. Particle scattering on residual gas, intra-beam stripping
- 4. Nonlinearities of focusing and accelerating elements
- 5. Non-linear space-charge forces of the beam
- 6. Mismatch of the beam with accelerator structure
- 7. Instabilities of accelerating and focusing field
- 8. Beam energy tails from un-captured particles
- 9. Dark currents from un-chopped beam

Tuning Procedures Used in Accelerator Facility

Energy (MeV)	Transverse (steering, matching)	Longitudinal (RF Amplitude and Phase Set Points)
0 - 0.75	Emittance Scans	
0.75 - 100	Emittance Scans, Wire Scans, Harps, Beam Position Monitors	Phase Scans
100 - 800	Emittance Scans, Wire Scans	Phase Scans, Delta-t
800	Wire Scans, Beam Position Monitors, Phosphor Screens	Wire Scan at High Dispersion Point

Ion Sources

Duoplasmatron proton ion source.

Cesiated, multicusp-field, surfaceproduction H⁻ ion source

lasma Chambe

lament

Converto

Repel

Cs dispens

	Source	Pulse Rate (Hz)	Pulse Length (μs)	Beam Current (mA)	Normalized rms emitttance (π mm mrad)
	H⁺	100	830	5	0.04
	H-	120	830	15	0.2
15 Alan	105				

EST.1943

750 keV H⁺/H⁻ Low Energy Beam Transports

81^oBends

H⁻ Chopper H⁻ 750 kV Column

	H+	H-	Common H+/H-
	Transport	Transport	Transport
Length, m	10.2	9.8	2.5
Number of Quadrupoles	18	18	4
Vacuum, Torr	10 -6	10-6	10-6
Space Charge Neutralization, %	< 20	50 - 100	0 - 50
Peak Current , mA	5	15	4.5/14.5
Beam Loss, mA	0.4	0.4	0.1

Beam Emittance Growth in Low Energy Beam Transport

RF Bunching

Beam	Emittance Growth $\mathcal{E}_{RF}/\mathcal{E}$
H-	1.1 – 1.2
H⁺	1.9 – 2.2

H⁻ Beam Chopping

Chopper Off

Chopper pulse 290 ns

Chopper pulse 36 ns

Bunchers Off Bunchers On

Emittance Growth in Drift Tube Linac (0.75 MeV – 100 MeV)

Effect of Beam Mismatch at the Entrance of DTL on Beam Loss in Transition Region (100 MeV)

 $\frac{1}{2}(R + \sqrt{R^2 - 4}) - 1$

 $R = \beta_1 \gamma_2 + \beta_1 \gamma_2 - 2\alpha_1 \alpha_2$

Mismatch Factor:

Ellipse Overlapping Parameter:

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

F =

0.2

Slide 12

Position (cm)

H⁻ Beam Losses in Coupled Cavity Linac (100 MeV-800 MeV)

Beam losses in CCL: 0.1% - 0.2%

Previous study indicated significance of Intra Beam Stripping and Residual Gas Stripping on H⁻ beam losses in Coupled Cavity Linac (L.Rybarcyk, et al, IPAC12, THPPP067):

Effect of DTL Cavity Field Error on Beam Losses in CCL

(L.Rybarcyk et al, LINAC 2016)

Summary

- 1. The LANSCE accelerator facility successfully transformed operation from 60 Hz to 120 Hz.
- 2. Beam losses are reduced due to more careful beam matching along the accelerator facility.
- 3. Beam losses are sensitive to beam mismatch and instability of RF parameters of accelerator cavities.
- New quantitative criteria for minimizing of beam losses are established for Low Level RF control system of DTL: 0.1% in RF amplitude and 0.1° in RF phase.

