Concept of RF Linac for Intra-Pulse Multi-Energy Scan

A. Krasnykh, J. Neilson, and D. Yeremian

IPAC2016, South Korea, Busan

Outline

Introduction **Technical Approach Proof of Concept Demonstrations** Linac Layout **Common comments** Conclusion

SL AC

Introduction

 It has been proposed* that an array of <u>fast detectors</u> can resolve the temporal Xray flux structure resulting from a ramped energy pulse. This can provide attenuation data versus beam energy that has been delivered during a pulse.

*Dr A. Arodzero, RadiaBeam

Linac in 3.5/6.0 MeV Interlaced Mode

- Preliminary R&D for such a detector system was conducted via a Linatron linac. The linac is based on a standing wave accelerating waveguide with a pulsed magnetron RF power source. An X-ray beam pulse after a converter has a ramp energy due to a electron slippage effects in accelerating structure.
- Neither beam current (X-ray flux) nor rate energy ramp can be controlled during the pulse mode of operation in the Linatron linac.

ASRE

Introduction: Benefits of Ramped Energy Linac

- Concept offers:
- Adaptive control, selection, and maintain of the output of electron beam energy (and x-ray accordingly)
- Adaptive control, selection, and maintain of the beam pulse width (and x-ray accordingly)

Adaptive control, selection, and maintain of the output of electron beam current (and x-ray flux).

Proposed Technical Approach

Concept for Intra-Pulse Multi-Energy Mode

Bunching and Accelerating of Packed Beam

Longitudinal Beam Bunching

Electrons are accelerated in half of RF period and slowed in other half

RF Acceleration of Bunch Train

A bunched train is set at the crest of the RF amplitude. Each bunch gets a maximum longitudinal momentum.

EM Fields in Kicker

Bunch Separation in RF Kicker

The natural frequency in the kicker structure is a sub harmonic

frequency of the accelerating structure.

<u>f_acc</u> = **n***<u>f_kicker</u>, where **n** is a number of converters

03-19-2012

Concept of RF Linac for Intra-Pulse Multi-Energy Scan

7

7

Relative RF Phases for 3 and 4 X-ray Beams

TE11 mode, for example

SLAC

For example, S-band (2.856GHz) is a kicker RF frequency and X-Band (11.434GHz) is an RF frequency of the accelerating structure

03-19-2012

9

Bunches on ON/OFF RF Crest, Bunches with RF AM and FM SLAC

Adaptive selecting, control and maintain the output electron beam energy would be feasible if the system BW is wide enough

Proof of Concept Demonstrations (PoCD): Bandwidth Issues

• High Power Klystrons: BW of RF sources are much wider against of DLWGs

The BW of linac hardware (RF Source and Accelerating Structure) can be matched with the X-ray detector system based on modern X-Ray detectors

Concept of RF Linac for Intra-Pulse Multi-Energy Scan

PoCD: Example of Parmela Simulation Phase Ramp

Concept of RF Linac for Intra-Pulse Multi-Energy Scan

PoCD: Phase Modulation Experiment at T-Cav3 (LCLS)

№ РАС ТСЗ				
LCLS LLRF Station: TCav3 TCAV:LI24:800:TC3			Cu	rrent State
Configuration	Monitors	Control	Valid Range	a: Min Max
Amplitude of Calib WF I Gain I Offset Q Gain Q Offset I Adjust Adjusted at 120 Hz during Q Adjust normal operation	16364 32470 -393 31557 137 13063 11595	12000	-32768 -32768	32767 32767
Select Waveform Pair Sample2 Trigger Mode External Expected Waveform Sample2 CPU Ext Trig Width (in				
I reference waveform 30000 10000 - 0 - 10000 - 30000 - 30000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 2000		ADC PAC T IQ Terr SSSB V Forv V Refle SSSB	: Values emp (deg C) ip (deg C) Temp (deg C) /ard (V) ected (V) Pwr Supply (V)	35.174 28.412 20.000 0.002 0.001

Concept of RF Linac for Intra-Pulse Multi-Energy Scan

PoCD: RF Amplitude and Phase Stability Issues

Block Diagram of LCLS Injector Stations

An RF amplitude stability of 0.03% with 0.06° STD of phase is demonstrated (at 2856 MHz and 120 PPS)

PoCD: Block Diagram of the Beam-Based Experiment

SLAC

The phase and amplitude modulation experiment with two bunches separated by approximately 600 nanoseconds.

Bunches were placed in the same RF pulse but in different accelerating phases.

The separation between the two bunches is more than 17,000 RF periods.

Both bunches were accelerated in the same beam focusing channel.

Concept of RF Linac for Intra-Pulse Multi-Energy Scan

Linac System Layout

If the other things being equal than a multi target system on the linac output will require higher beam average power compared to the single target case.

$$P_{av} \leq \frac{cB_ZG}{W_{\perp}} \mathcal{F}$$

A pulse duration and a bunch population are parameters (should be optimized).

A bunch population depends on a/ λ , f₀, G (a limitation is a short range of W_⊥).

A bunch separation depends on long-range W_{\perp} .

An acceptance of the accelerating structure should be optimized for a wide range of the electron energy (from 1 MeV to 10 MeV) and a wide range of the beam current.

Conclusion

An adaptive X-ray source concept based on a controllable electron beam energy and beam intensity was discussed.

The X-ray source contains the traditional accelerator components: electron source, bunching and accelerating section, beam kicker/spreader, and converter.

A specific feature of proposed source is its mode of operation. The intra-pulse multi-energy scan mode is feasible if the frequency bandwidth of RF components (buncher, accelerating, kicker, etc.) is in a 50-100 MHz range.

This mode of operation offers a combination of X-ray parameters to give high resolution images, better material discrimination, high scan speed, low dose, i.e. a controllable flexibility during the duration of the scan pulse.

In combination with fast detectors (which are adequate to the bandwidth of the linac components) this concept provides the information needed for material discrimination in a single X-ray pulse.

Acknowledgments

I would like to thank

- Dr. A. Arodzero for a linac problem origination,
- SLAC linac operators for support during the beam-based experiments

This work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.