

Progress in Accelerator Mass Spectrometry How far have we travelled? How far can we get?

Hans-Arno Synal Laboratory of Ion Beam Physics ETH Zurich

synal@phys.ethz.ch

Carbon-14: Direct Detection at Natural Concentrations

Abstract. The ¹⁴C atoms naturally present in a piece of 19th-century wood have been detected directly by means of a tandem Van de Graaff accelerator used as a high-energy mass spectrometer. The ¹⁴C ions were easily resolved from interfering ions with the use of a ΔE -E detector telescope (this telescope consists of a pair of detectors; one of them measures the specific ionization, ΔE , and the sum of the signals from both detectors gives the total energy for each ion, E_T). The technique offers a number of practical advantages.

40 years ago: Science vol.198 p. 507-508

Radiocarbon Dating Using Electrostatic Accelerators: Negative Ions Provide the Key

Abstract. Mass spectrometric methods have long been suggested as ways of measuring ${}^{14}C/{}^{12}C$ ratios for carbon dating. One problem has been to distinguish between ${}^{14}N$ and ${}^{14}C$. With negative ions and a tandem electrostatic accelerator, the ${}^{14}N$ background is virtually absent and fewer than three ${}^{14}C$ atoms in 10^{16} atoms of ${}^{12}C$ have been easily measured.

www.ams.ethz.ch

NEW YORK, THURSDAY, JUNE 9, 1977

A New Method of Carbon-14 Dating Expected to Double Science's Range

AMS-Heros

A.E. Litherland K.H. Purser H.E. Gove

not in picture E. Nelson G. Raisbeck R. Muller

Famous examples of Radiocarbon dating

Buddha's of Bamiyan Afghanistan

Art historic object

The Shroud of Turin

"Özi" the Ice Man

The Minoan Eruption (Santorini)

The World of AMS facilities in 2016

IPAC16

HIGH VOLTAGE ENGINEERING EUROPA B.V.

Amsterdamseweg 63, 3812 RR Amersfoort, P.O.Box 99, 3800 AB Amersfoort, The Netherlands Phone: +31 33 4619741 Fax: +31 33 4615291 E-mail: info@highvolteng.com Web: www.highvolteng.com

System layouts

lonplusឹ

engineering scientific instruments

Commercial AMS systems

Eidgenössische Technische Hochschule Zürich Accelerator Mass Spectrometrv a unique detection technique

Swiss Federal Institute of Technology Zurich

- Single atom detection capabilities
- High accuracy (‰)
- Huge dynamic range (10⁴)
- **Extreme sensitivity** Isotope ratios: 10⁻⁶ - 10⁻¹⁵

Sample:

Typical size:

 $mg \rightarrow \mu g$ $10^4 \rightarrow$ million atoms

www.ams.ethz.ch

Counting Atoms

Decay counting
(Libby)
$$N(t) = N_0 \times e^{\Box t}; \quad \Box = \frac{\ln(2)}{T_{1/2}}$$

$$A(t) = \frac{dN(t)}{dt} \implies A(t) = N(t) \times \square$$

$$T_{1/2} = 5730 \ a$$

$$\square = 3.84 \times 10^{-12} / s$$

$$t_{count} \approx 10^6 s$$

$$\Rightarrow \square_{tot} \approx 4 \times 10^{-6}$$

Counting atoms (AMS)

$$N_{AMS} = N \times \Box_{lot}$$

$$\Box_{lot} = \Box_{lon} \times T \times \Box_{det}$$

$$\Box_{lon} \approx 10\%$$

$$\Box_{det} \approx 100\%$$

$$T \approx 40 \Box 50\%$$

At least 4 orders of magnitude better!!!

(g) ←

Sample size \rightarrow (mg \rightarrow µg)

Mass analyses of ions

mass spectrometer

isobar/ molecule	mass (MeV/c²)	Δ mass (MeV/c²)	m/∆m
¹⁴ C	13044.0422		
¹⁴ N	13043.8861	0.1561	83562
¹² CH ₂	13055.6004	11.5582	1129
¹³ CH	13051.4364	7.3942	1766

- Isobar separation
 - Negative ion formation
 - ¹⁴C(¹⁴N); ²⁶Al(²⁶Mg); ¹⁰Be(¹⁰B); ³⁶Cl(³⁶S); ⁴¹Ca(⁴¹K);
 - ¹⁰BeF/BeBaF(¹⁰BF); ⁴¹CaH₃(⁴¹KH₃); ⁴¹CaF₃(⁴¹KF₃);
 - Ion detection
- Abundance sensitivity
 - Suppression of neighboring isotopes (1:10¹⁵)
 - Multi-step mass filtering process
- Reproducible isotope ratio measurements
 - High ion optical transmission
 - reliable normalization procedure
- Eliminate mass interferences
 - Molecule destruction

- Charge state >3⁺ molecule dissociation by coulomb force
- Charge state 1⁺ in multiple ion gas collisions

Key features for radionuclide detection

"golden AMS rules"

Molecule Destruction

atomic and molecular ions: ¹⁴C,¹³CH,¹²CH₂

0 G° G

mass 14 amu

Molecule Destruction

atomic and molecular ions: ¹⁴C,¹³CH,¹²CH₂

mass 14 amu

Stripping Process

- Electron-loss
- Electron capture
- Break-up of molecules
- Energy straggling
- Angular straggling

Stripping Process

- Electron-loss
- Electron capture
- Break-up of molecules
- Energy straggling
- Angular straggling

- Electron-loss
- Electron capture
- Break-up of molecules
- Energy straggling
- Angular straggling

Stripping Process

www.ams.ethz.ch

How does AMS work?

IPAC16

Charge state yield & accelerator size

IPAC16

Traditional 3-6 MV AMS systems Leibniz AMS 3 MV facility, Kiel, GER

¹⁴C charge state yield & accelerator size

- Electron-loss
- Electron capture
- Break-up of molecules
- Energy straggling
- Angular straggling

THE ¹²CH²⁺₂ MOLECULE AND RADIOCARBON DATING BY ACCELERATOR MASS SPECTROMETRY

H.W. LEE, A. GALINDO-URIBARRI *, K.H. CHANG, L.R. KILIUS and A.E. LITHERLAND

ISOTRACE Laboratory, University of Toronto, Toronto, Ontario M5S 1A7, Canada

- Electron-loss
- Electron capture
- Break-up of molecules
- Energy straggling
- Angular straggling

Destruction of molecular ions in q=1⁺

The Generation of Compact AMS Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The first compact AMS system (1998) using charge state 1⁺

Commercial systems are on the market from NEC and HVEE

KECK AMS facility, Irvine, USA

Compact AMS Systems (1 MV- 500 kV)

AMS facility, Seville, Spain

1 MV Tandetron accelerator

Tandy AMS facility, Zurich, CH

IPAC16

Replacing the traditional Accelerator (MICADAS system)

www.ams.ethz.ch

Swiss Federal Institute of Technology Zurich

He-stripping to enhance performance: AixMICADAS (2014)

in collaboration with:

performance:

- 48 % transmission
- > 90% ion optical transmission
- stable operation conditions

Vendredi 11 juillet 2014

GreenMICADAS project

UPPSALA

UNIVERSITET

DANFYSIK

Arnd Braurichter Franz Boedker Leif Baandrup Göran Possnert Mehran Salehpour

Introducing permanent magnets in AMS instruments

- Simplified installation
- No cooling water required
- significant reduction in operating costs

Why shall we get away from a well established concept?

```
energy consumption of magnets:
10 kW @ 3000 h/year
energy costs: ~ 0.3 $/kWh → 9000 $/yr
```


GreenMICADAS developed at ETHZ

Wall plug 3 x 400 V/16 A

compact lab-sized instrument (low power consumption)

- automatic operation
- low maintenance costs
- no open high voltages
- simple operation

NEW YORK, THURSDAY, JUNE 9, 1977

A New Method of Carbon-14 Dating Expected to Double Science's Range

Rochester, NY(USA) MP tandem accelerator

AMS-Heros

- A.E. Litherland K.H. Purser H.E. Gove
- not in picture E. Nelson G. Raisbeck R. Muller

MASS

NEW YORK, THURSDAY, JUNE 9, 1977

A New Method of Carbon-14 Dating Expected to Double Science's Range

AMS-Heros

- A.E. Litherland K.H. Purser H.E. Gove
- not in picture E. Nelson G. Raisbeck R. Muller

5-10µgm/cm²

NEW YORK, THURSDAY, JUNE 9, 1977

A New Method of Carbon-14 Dating Expected to Double Science's Range

Rochester, NY(USA) MP tandem accelerator

AMS-Heros

- A.E. Litherland K.H. Purser H.E. Gove
- not in picture E. Nelson G. Raisbeck R. Muller

What else??

Cross section of molecule dissociation

He areal density of $\approx 0.5 \mu g / cm^2$ should be sufficient to get rid of molecules

He Physics of He-stripping at very low energies

A pure mass spectrometer for ¹⁴C detection

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Experimental platform (prototype instrument)

- Investigate physical processes
- find best suited ion optical conditions
- test designs for a dedicated ¹⁴C mass spectrometer

2.5 m

Performance not comparable to state-of-the-art AMS systems but suitable for many applications !!!

www.ams.ethz.ch

- 2.0 m

Swiss Federal Institute of Technology Zurich

Moor's Law in AMS

Universal compact AMS instrument

- ¹⁰Be ¹⁰B isobar suppression
- ¹⁴C
- ²⁶Al
- ⁴¹Ca
- 129
- Actinides (U, Pu, Pa, Np)

¹⁰B isobar separation using SiN degrader

¹⁰B isobar separation using SiN degrader

For comparison:

overall Transmission at large AMS facilities (6-8 MV) (LLNL~ 35%, Aster ~25%)

Transmission:

Degrader foil to detector:	20%
Stripper (charge state 1 ⁺):	55%
ightarrow LE-end to detector:	10-12%

⁰ Be/ ⁹ Be background level:	10 ⁻¹⁵
--	-------------------

Universal compact AMS instrument

- ¹⁰Be
- ¹⁴C
- ²⁶Al
- ⁴¹Ca
- 129
- Actinides (U, Pu, Pa, Np)

3+

Improving ¹²⁹I measurements conditions

	$129 \times 1/3 = 43$				
	129 × 2/3 = 86				
2+	• no interference from ions in 1+:				
	129 × 1/2 = 64.5				
performance data compact AMS					
	acceleration voltage	300 kV			
	charge state	2+			
	transmission	≈ 53 %			
	HE transmission	≈ 90 %			
	overall transmission	≈ 48 %			
k	blank (cross contamination)	≈ 1 · 10 ⁻¹³			

interferences from ions in 1+ and 2+:

Universal compact AMS instrument

- ¹⁰Be
- ¹⁴C
- ²⁶Al
- ⁴¹Ca
- 129
- Actinides (U, Pu, Pa, Np) "no" isobars

Suppression of heavy isotopes (235U/236U)

- tailing and straggling of ²³⁵U produces background @ m=236
- after the ESA: ²³⁶U/²³⁸U>10⁻⁹
- with additional magnet: ²³⁶U/²³⁸U <10⁻¹²

He stripping with Actinides

element	suppression neighboring masses	detection limit: 1 count equivalent	detection efficiency #counts/atoms
Thorium	233/ ²³² Th ≈ 10 ⁻⁹ 231/ ²³² Th ≈ 4*10 ⁻¹²	≈ 10 ag	4*10 ⁻⁵
Uran	$236/^{235}$ U $\approx <10^{-10}$ $236/^{238}$ U $\approx <10^{-12}$	≈ 5 ag	10-4
Plutonium	$239/^{238}$ U $\approx 3*10^{-10}$ $237/^{238}$ U $\approx 10^{-12}$	≈ 10 ag	5*10 ⁻⁵

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Compact AMS: a versatile Instruments!! But, can we go on?

Compact AMS: a versatile Instruments!! But, can we go on?

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

MICADAS accelerator @ 300 kV

Measurement performance equivalent or better compared to Pelletron accelerator

design of a new Multi-isotope AMS spectrometer driven by a vacuum insulated HV platform

proof-of-principle experiment

- 300 kV technically feasible
- AMS test measurements performed
 - ²³⁶U
 - ¹²⁹
 - ⁴¹Ca
 - ²⁶Al

Eidgenössische Technische Hochschule zürich Eidgenössische Technische Hochschule zürich Swiss Federal Institute of Technology Zurich

New system (preview)

- Sputter ion source
- Additional ESA on injection side
- Compact acceleration & optimized stripper
- Quadrupole lens triplet after acceleration
- Increased angular acceptance on HE side
 - •••

Prototype development ongoing

AMS measurements of ¹⁴C, ¹⁰Be, ²⁶Al, ⁴¹Ca, ¹²⁹I, actinides, 2017??

AMS-World today

Conclusions

- AMS has matured over the past 40 years
 - High performance instruments are available from various commercial suppliers
 - Instruments can be tailored to the specific needs of the users
- Major breakthrough has been reached by introducing stripping to 1+
 - molecule interferences can be destroyed efficiently
 - Compact AMS systems are now most favored type of instruments
- Tradition accelerator technology can be replaced (200 kV HV power supplies)
- He stripping is the key to enhanced performance of instruments
- Permanent magnets reduce complexity and operation cost of dedicated ¹⁴C Instruments
 - High ion optical transmission for ¹⁴C
 - Stable an reproducible measurement conditions
 - Enable measurement performance similar to tradition MS
- First steps towards a true mass spectrometer for ¹⁴C detection has been made
 - present day performance not jet on a competitive basis to i.e. 200 kV MICADAS system
 - but potential for high throughput / lower precision ¹⁴C (e.g. bio/environmental science)
- HV power supply driven system are suitable for detection of all major AMS nuclides
- He stripping provides unique transmission efficiencies
 - for very heavy nuclides such as ¹²⁹I and actinides the will outperform any other approach
 - dedicated instruments will be available soon

Conclusions

- Progress became possible because:
 - systematic research of the physics of the fundamental processes behind the AMS method
 - charge exchange processes, angular straggling, molecule dissociation cross sections
- Simulation and mathematical modelling tools have been developed
 - optimize ion beam transport
 - Simulate ion interaction with e.g. stripper gas or within the particle detector
- Tradition accelerator technology can be replaced (200 kV HV power supplies)
- He stripping is the key to enhanced performance of instruments
- Permanent magnets reduce complexity and operation cost of dedicated ¹⁴C Instruments
 - High ion optical transmission for ¹⁴C
 - Stable an reproducible measurement conditions
 - Enable measurement performance similar to tradition MS
- First steps towards a true mass spectrometer for ¹⁴C detection has been made
 - present day performance not jet on a competitive basis to i.e. 200 kV MICADAS system
 - but potential for high throughput / lower precision ¹⁴C (e.g. bio/environmental science)
- HV power supply driven system are suitable for detection of all major AMS nuclides
- He stripping provides unique transmission efficiencies
 - for very heavy nuclides such as ¹²⁹I and actinides the will outperform any other approach
 - dedicated instruments will be available soon