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Abstract

YACS is a 2.5D finite element method solver capable of

solving for the full 3D eigenfrequency spectra of resonant

axisymmetric structures while reducing the computational

problem to a 2D rotation plane. Prior studies and bench-

marks, comparing YACS to well known commercial 3D

and 2D applications, already demonstrated its capabilities

of performing fast optimizations of geometries, due to its

minimal computational overhead. However, because of the

first order elements and basis functions used for approxima-

tion of the domain and field, this solving speed advantage

vastly diminishes when targeting higher accuracies. In order

to circumvent these issues, YACS was upgraded to support

arbitrary order basis functions and curved meshes, leading

to, but not limited to, isoparametric finite elements. This

led to distinct performance and convergence improvements,

especially when considering curved geometries, ideally rep-

resentable by a polynomial mapping, e.g. when choosing a

cavity geometry parametrization based on splines.

INTRODUCTION

Despite the wealth of readily available commercial and

non-commercial codes that are suitable to solve the eigen-

value problems that typically arise from the Maxwell equa-

tions in bounded domains [1, 2], only a small fraction of

these codes make use of the inherent axisymmetry of typical

accelerator components. Even less codes are able to utilize

the axisymmetry and solve for the full non-axisymmetric

3D electrical field. In response to this, YACS, a 2.5D finite

element method solver has been developed [3]. YACS is

capable to solve for the full 3D eigenfrequency spectra of

resonant axisymmetric RF-structures, while also utilizing

state of the art numerical libraries [4–6] and, thus, offering

distinct performance increases compared to 3D codes.

FIRST ORDER APPROXIMATION

Benchmark results that were presented prior [3] and show-

cased the performance of YACS utilizing first order approx-

imations of the domain and field, revealed its improvable

convergence behavior, compared to commercial codes that

utilize higher order approximations (see Fig. 1), where the

order p refers to the finite dimensional space of a quadrilat-

eral element [7]

Pp =

{
x j
y
k : 0 ≤ j, k ≤ p

}
.
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Figure 1: Relative frequency deviation of the first six

monopole modes, obtained from YACS and COMSOL, of

a 500 MHz pillbox cavity, as a function of the number of

triangles used. The frequency deviations were calculated

with respect to the analytical solution. This older iteration

of YACS uses first order basis functions and triangles.

As a consequence, it was concluded that an increase of

the order of approximation is mandatory, to be competitive

in the long term. To be as flexible as possible and to enable

adaptive refinement, the new implementation of YACS was

required to also support arbitrary order of approximation,

for both the domain and field.

ISOPARAMETRIC ELEMENTS

An isoparametric representation typically refers to an ap-

proximation of the domain and field utilizing the same ba-

sis [8]. As presented in the subsequent sections, the basis

used to represent curved elements is not suitable to approx-

imate the field. Therefore, isoparametric elements are re-

ferred to as elements that use the same order of approxi-

mation in this work. To enable maximum flexibility and

adaptivity, YACS is not limited to isoparametric elements

and supports superparametric and subparametric represen-

tations as well, where the order of approximation of the

domain and field differs. For alleviation of development

efforts, the initial implementation of the higher order ap-

proximation supports 2D problems only. Thus, all function

bases are H1-conforming.
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Figure 2: Relative square wavenumber deviation, obtained from YACS and COMSOL, of the fundamental mode of a square

and spline membrane, as a function of the degrees of freedom and the solution time required. The wavenumber deviation

were calculated with respect to the analytical solution for the square membrane, and to the COMSOL solution for the

highest number of degrees of freedom for the spline membrane.

Higher Order Basis Functions

One straight forward approach to obtain a higher order

basis1

φi (x, y) = ci jk x ( j ) x (k ) , (1)

is to introduce additional virtual points inside the refer-

ence element, and require

φi
(

x j , y j
)

= δi j .

The arising equation system leads to 2D Lagrange poly-

nomials. One major benefit of such a function basis is that

they directly connect the degree of freedom of a particular

basis function φi to a physical quantity, e.g. the electrical

field at the virtual point (x j , y j ). However, there a two major

drawbacks to this approach.

• The basis is not hierarchical, meaning that an increase

or decrease of the order results in a completely different

1 Using the Einstein summation convention.

set of basis function. This leads to discontinuities on

shared boundaries, and, thus, makes it impossible to

adaptively adjust the order on an element basis.

• Using a Lagrange polynomial based function basis re-

sults in ill-conditioned system matrices, which in turn

leads to diverging solutions as can be seen in Fig. 2

and 3.

Fortunately, there has been much research regarding suit-

able hierarchical basis functions to circumvent those issues,

of which the ones proposed in [7] and [9] that utilize Leg-

endre and integrated Legendre polynomials to construct the

function basis, are presented. It should be noted that a finite

basis can, according to (1), be represented by a third order

coefficient tensor, so that users of YACS can easily supply

their own bases.

Using the aforementioned function bases, benchmarks on

a square membrane, which could be represented by a single

straight edged quadrilateral element, were performed. Due to

the first order quadrilateral element, the degrees of freedom
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Figure 3: Condition numbers of the fundamental stiffness

(S) and mass (M) matrices of the generalized eigenvalue

problem for a square membrane, as a function of the degrees

of freedom.

are solely dependent on the basis order of the field approxi-

mation. Figure 2 displays the relative square wavenumber

deviations as a function of the degrees of freedom and the so-

lution time required. One can observe distinct improvements

in the convergence behavior compared to the prior studies

with linear basis functions, as can be seen in Fig. 1, for both

the Lagrange and Legendre based basis functions. Albeit

the Lagrange based basis is diverging for higher numbers of

degrees of freedom, it is certainly suitable for lower order

approximations.

Curved Elements

In order to minimize the geometrical error that typically

arises when discretizing a curved geometry with linear resp.

straight edged elements, curved elements were also imple-

mented. The discretization of the problem domain with

curved elements can be performed with Gmsh [10] and uti-

lizes once again 2D Lagrange polynomials for the mapping

between the reference element and the curved element. The

benchmark results obtained from calculating the eigenvalues

of a spline shaped membrane, which also has been proposed

as an alternative parametrization for superconducting cav-

ities [11], are presented in Fig. 2. Since splines offer the

major benefit of being representable by a finite polynomial

curve, a mapping to a curvilinear coordinate system of suf-

ficient degree extinguishes the geometrical error. Such a

curvilinear coordinate system is shown in Fig. 4.

Again, a single quadrilateral element to represent the prob-

lem domain, has been used. The degrees of freedom are,

Figure 4: Curvilinear coordinate system obtained from map-

ping the reference quadrilateral to a spline shaped membrane.

The red and green lines represent the coordinates in the ref-

erence domain.

therefore, solely represented by the order of the basis of the

field. The convergence behavior is similar to the benchmark

results obtained from the square membrane, and outperforms

the ones obtained from COMSOL [12]. However, due to the

additional coordinate transformation and the overhead intro-

duced, the computation time increases. Certainly the present

implementation of curved elements can be improved, hope-

fully leading to substantial improvements in computation

times in future iterations of YACS.

CONCLUSION

Due to the improvable convergence rates of prior itera-

tions of YACS, compared to commercial codes, arbitrary

order of approximation for both the domain and field were

implemented. This led to distinct improvements in the con-

vergence behavior. To alleviate the development efforts, this

first iteration was restricted to 2D problems only. A vastly

improved conditioning of the system matrices, when using

preferably orthogonal basis functions, could be observed.

Utilizing curved elements, the geometrical error that arises

from discretizing curved problem domains could be dimin-

ished. As a result, the geometrical error for geometries that

are parametrized by polynomial curves extinguishes, when

choosing a suitable order of approximation. In spite of the

actual improvement of the convergence behavior, the solu-

tion time required when using curved elements suffers due

to the introduced overhead. The current goal for future iter-

ations of YACS is to substantially improve the computation

time when utilizing curved elements.
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