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Abstract
Beam physics at the intensity frontier must account for

the beams’ realistic surroundings on their dynamics in an
accurate and efficient manner. Mathematically, the problem
can be expressed as a Poisson PDE with given boundary
conditions. Commonly, the Poisson boundary value problem
is solved locally within many volume elements. However, it
is known the PDE may be re-expressed as indirect boundary
integral equations (BIE) which give a global solution [1].
By solving the BIEs on M surface elements, we arrive at
the indirect boundary element method (iBEM). Iteratively
solving this dense linear system of form Ax = b scales
like O(miterationsM2). Accelerating with the fast multipole
method (FMM) can reduce this to O(M) if miterations �

M . For N evaluation points, the total complexity would be
O(M) + O(N ) or O(N ), N = M. We have implemented a
constant element version of this fast iBEM based on our
previous work with the FMM in the differential algebraic
(DA) framework [2]. This implementation is to illustrate the
flexibility and accuracy of our method. A future version will
focus on allowing for higher order elements.

INTRODUCTION
High intensity charged particle beams have been applied

in an ever-growing number of areas. Modern scientific, medi-
cal, and industrial applications require precise control and/or
high beam quality than conventional methods allow. For fu-
ture system designs, it is imperative to simulate the forces
due to self fields in large scale models, where pairwise sum-
mation scales like O(N2). It is known the forces due to the
surroundings become important for higher current. Modern
simulations must account for both effects to some application
dependent tolerance.
Conventional simulation codes solve the Poisson PDE

locally within small volume elements. In general, these local
solutions are less accurate far from the origin, with little
control on the error bounds. Discretized volume methods
are ill-suited to model the forces due to the surroundings in
beam physics applications, where the beam is assumed to
be far away from the surroundings.
Using Green’s identities, we may reformulate the PDE

as boundary integral equations (BIEs). The BIEs guarantee
a global solution matching the boundary conditions with
well bounded error [1]. Solving the BIEs on the discretized
boundary gives a dense, nonsymmetric matrix equation of
type Ax = b with size M boundary elements. This is known
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as the boundary element method (BEM) [1]. Iteratively solv-
ing this matrix equation would then scale like O(M2) due to
the matrix-vector product. The fast multipole method can be
used to accelerate the BEM, ideally scaling like O(M) [3].
In previous work, we implemented the fast multipole

method (FMM) for space charge using differential algebraic
(DA) methods [2,4]. Ideally, the FMM scales like O(N ) and
is well-bounded by Taylor’s theorem [3]. For preliminary
studies, we accelerate the constant element BEM using our
FMM implementation with multipole order p. When solv-
ing the system matrix, we started with a lower order FMM,
multipole order p

2 in our iterative solver to precondition the
system. We then ran at the prescribed order to reach our final
tolerance. In this work, we compare results obtained from
the analytical solution for a perfectly conducting thin spheri-
cal shell and the conventional BEM. We also show results
for an elliptic cylindrical shell using our implementation.
We work with arbitrary units for simplicity.

IMPLEMENTATION SETUP
We chose the indirect formulation of the boundary integral

equations with the ansatz that a unique solution exists [1].
For further details, readers may refer to [1, 3]. We split the
BVP into Poisson type,∆φ(x) = ρ(x) in the interior, x ∈ Ω−,
with open boundary conditions and Laplace type,∆ψ(x) = 0,
on the boundary, x ∈ Γ and solve the Laplace equation for
the appropriately modified boundary conditions. As our first
trial, we choose the single layer potential with Dirichlet BCs.
For the interior Dirichlet problem, our BIE is,

ψ(x) =
∫
Γ(y)

G(x, y)σ(y)dΓ(y) x ∈ Ω− (1)

Our discretized BIE for constant elements is,

ψi = Ii jσ j x ∈ Γ (2)

Ii j = G(xi, yj )
∫
Γ(y j )

dΓ(yj )

Where G(x, y) is the Green’s function.
Simulation parameters are given in Table 1. The sam-

ple particles for the spherical shell were given a uniform
distribution and constrained to |r| ≤ 0.02. The sample
particles for the cylindrical shell were also given a uni-
form distribution and constrained to

√
r2
x + r2

y ≤ 0.054 and
−0.05 ≤ rz ≤ 0.05. Since we are interested in the bound-
ary effects on a charged particle beam, we evaluated the
potentials at the sample particle positions.
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Table 1: Simulation Parameters
No. of particles 1000

Species Proton
FMM order 12
Inside sphere |r| ≤ 0.02

Inside cylinder
√

r2
x + r2

y ≤ 0.054,−0.05 ≤ rz ≤ 0.05

PERFECTLY CONDUCTING SPHERE
We use the perfectly conducting sphere as an analytical

check. From the image charge method [5], the potential due
to a point charge q inside a sphere of radius R with constant
potential Φ0 is

Φ(x) =



q
|x − y|

−
Rq

y
����x −

R2

y2 y
����


+ Φ0 (3)

We discretized a sphere with Φ0 = 0, centered at the ori-
gin as shown in Fig. 1. We have included the unit normals
to show the orientation of the boundary elements. The dis-
cretization parameters are shown in Table 2. The relative
error between the discretized surface area and the actual sur-
face area is given as a measure of the discretization accuracy.

Figure 1: Discretized spherical shell with 1280 elements and
its outward normals at the element centroids.

Table 2: Sphere Parameters, R = 0.1

No. of elements Area relative error
80 7.17×10−2

320 1.88×10−2

1280 4.76×10−3

5120 1.19×10−3

We collected the total potentials at the sample particle
positions from our FMM accelerated BEM (FMBEM) and
compared it with the conventional BEM and the analytical
result. As shown in Fig. 2 and Fig. 3, the relative error is
drastically reduced as no. of elements increases.

The discrepancy between the analytical result and conven-
tion BEM is mainly due to the discretization error. Figure 4
compares the relative error between the conventional BEM

Figure 2: Relative error in computed potentials inside the
conducting spherical shell between analytical vs conven-
tional BEM. Distributions for M = 80, 320, 1280, 5120 ele-
ments are shown.

Figure 3: Relative error in computed potentials inside
the conducting spherical shell between analytical vs
fast multipole accelerated BEM. Distributions for M =

80, 320, 1280, 5120 elements are shown at multipole order
12.

and the FMBEM with 5120 elements at multipole order 12.
The inexact matrix-vector products computed by the FMM
for the iterative solver still contribute a small discrepancy,
suggesting reduction from multipole order.

Figure 4: Relative error in computed potentials inside the
conducting spherical shell between the conventional BEM
vs fast multipole accelerated BEM. The distribution for M =
5120 elements is shown at multipole order 12.

We next studied the discrepancy between the conventional
BEM and FMBEM as a function of multipole order. We
show the results in Fig. 5. The relative error decreases with
multipole order because the inexact matrix vector products in
the iterative solver become more accurate. Figure 5 suggests
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Figure 5: Relative error between the BEM and FMBEM vs.
no. of elements and multipole order. We see good perfor-
mance as multipole order increases.

for constant elements, we need extremely high multipole
order to achieve machine accuracy. We hope to address this
by allowing for high order elements.

CYLINDRICAL SHELL
We have shown our implementation gives good results

with high number of elements and multipole order. To test
our implementation on a more practical problem without
a known analytical solution to the authors at this time, we
computed the potentials inside an elliptic cylinder due to
a bunch. We discretized an elliptic cylinder with Φ0 = 0.6
along the wall and Φ0 = 0 at the endcaps, shown in Fig. 6.
The unit normals show the orientation of the boundary ele-
ments. The cylinder parameters are given in Table 3, with
the relative error in surface area to show the discretization
accuracy. The cylinder was placed between z = −0.2 and
z = 0.7.

Figure 6: Discretized cylindrical shell with 876 elements
and its outward normals at the element centroids.

Table 3: Cylinder Parameters, Rx = 0.2, Ry = 0.5, L = 0.9

No. of elements 876
Area relative error 3.49×10−3

Φ0 on wall 0.6
Φ0 on endcaps 0

We placed a weak constant potential on the walls and zero
potential on the endcaps. We show the self-potentials and
the potentials due to the boundary at the particle positions
in Fig. 7.
We see the potentials are grow towards the center of

the bunch, suggesting a dominant outward force, aka space
charge force. We see some asymmetry from the boundary
contribution since the endcap at z = −0.2 is closer.

CONCLUSIONS
We have successfully combined our differential algebraic

fast multipole method with the constant element boundary

Figure 7: Potentials at the sample particles inside an ellip-
tic cylindrical shell. The sum of the potentials is highest
inside the bunch, dominated by the self potentials. Top: Self
potentials. Bottom: Potentials due to the boundary.

element method. We have shown convergence with number
of elements and multipole order. We have presented the
potentials on a bunch inside an elliptic cylinder with constant
potential on the walls. For this particular case, the effect
due to the particles is dominant. There is much room for
improvement and optimization in this implementation. We
will next focus on the high-element-order fast multipole-
accelerated boundary element method.
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