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Abstract 
GIOTTO is a software based on a Genetic Algorithm 

(GA). Its development started in 2007 with a work 
published on NIMB (263, 2007, 488-496) and presented 
at PAC07 (THPAN031). When the parameters, defining 
an acceleration machine beam line, are strongly correlated 
in nonlinear way, the GAs are a powerful tool to coup 
with these difficulties. These conditions are typically 
generated by space-charge, as in the high brightness e-
beam photo-injectors or when the Velocity Bunching 
compression technique (VB) is used. The power of 
GIOTTO is the adaptability to different cases, given by its 
own structure that permits to drive different external 
codes in series, the possibility to define a user dependent 
multi objective fitness function and function constraints 
on the beam dynamics, as well as the possibility to turn 
off the genetic optimization to perform statistical analysis 
(machine jitters). Up today it has been used in 
Thomson/Compton sources, ultra-short e-bunches 
generation by VB, focusing channel and dog-leg lines 
optimizations. 

 

INTRODUCTION 
In the last few years, in the field of accelerator physics 

and beam dynamics (BD), many works on problem 
solving and optimizations based on GAs have been 
produced. Even though the GAs have been introduced in 
the ‘70s with the well-known first monograph of John 
Holland (1975) [1], and already in the ‘90s GAs in 
various forms have been applied to problems in topics 
spanning from engineering, economics and artificial 
intelligence [2-4], in the accelerator physics and beam 
dynamics these optimization techniques are relatively 
young.  

The improvement in the high brightness electron beams 
of the last few years has produced really important results 
in different fields, as for instance: the implementation of 
XUV and X rays Free Electron Lasers [5], the 
acceleration in plasma wave [6] or the Thomson 
scattering sources [7]. The production of such high 
quality brightness beams is always relate to an 
outstanding capability to tune the electron injector [8] and 
to cope with the bunch space charge. The space charge 
effects couples in a non-linear way the beam-line 
parameters. Giving an example, a good emittance 
compensation [9], downstream a Gun photon-injector, is 
mainly connected to the following issues: a) the laser 
pulse shaping at the cathode, b) the extracted charge, c) 

the Gun gradient, d) the Gun’s solenoid intensity and e) 
the position of the first booster cavity. All these 
parameters are coupled each other in a complex way by 
the space-charge, making impossible a sequential 
optimization of the parameters; this fact is true not only 
from the experimental point of view, but even for the 
simulations. Such kind of problems, non-linear and 
multidimensional, are typically well faced by using GAs. 
Their stochastic nature prevents the convergence on weak 
local minima and, furthermore, the parallel structure is 
appealing for time consuming optimizations.    

GIOTTO (Genetic Interface for OpTimising Tracking 
with Optics) is the evolution of a previous software, based 
on a GA [10, 11]. References [10, 11] have been 
commonly used to cite GIOTTO itself and are among the 
first works based on GAs for performing beam dynamics 
optimizations, driving simulation codes. 

    

THE SOFTWARE 
GIOTTO is based on a homemade GA. The development, 
done in modern Fortran, has been carried out by using 
high level structures, like ad hoc methods and operators, 
which give to the code an easily modifiable or upgradable 
structure [12]. GIOTTO, in most of its applications, starts 
by driving the tracking code Astra [13] and its generator 
and by using all their parameters as possible knobs for 
optimizations. The interface between GIOTTO and Astra, 
or Astra’s generator, hosts in itself the capability to easily 
write and to easily manipulate input files. This capability 
has been implemented in a generalized way, making 
GIOTTO potentially able to drive different codes. Inside 
the code is in fact is present an Input Names Data Base 
(INDB) that can be expanded as needed, inserting all the 
parameters (the Input Names) necessary to write a code’s 
input file. This methodology has been developed by using 
the Fortran namelist NML, so if a code is driven with 
NML input files, that code can be naturally used, or 
driven, by GIOTTO. In different way, for managing other 
ASCII input files it is necessary an interface.  
For the sake of clarity, let we think to perform an 
optimization on a beam dynamic problem that copes with 
different laser pulse shaping (at the photocathode) and 
with different electron beam line settings downstream the 
gun. To perform such optimization, GIOTTO writes both 
the Astra’s generator and Astra input file, then runs the 
two codes in sequence. This procedure has been thought 
to be really easily extendible to more in cascade codes. 
For example it has been already tested in the sequence: 
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Astra’s generators → Astra → Fluid tracking code for 
plasma accelerators or Astra → Parmela [14] → 
ThomXcode. Moreover, GIOTTO is a parallel code, 
developed by using the MPI library, so just to mention, 
when GIOTTO runs a cascade of codes, it means that N 
sequences are executed, in relation to the number of 
nodes it is running on. GAs by their own nature are ad 
hoc to be parallelized.    
Nowadays many GA types of software are based on the 
Multi Objective typology (referred to as MOGA) [15]. 
These kind of GAs are useful when several optimization 
criteria are present simultaneously and it is difficult or 
impossible to combine them in a single value (referred to 
as fitness function). In these cases, by peculiar 
evolutionary technique, referred as VEGA, MOEAs, 
MOGA, NSGA, NPGA, where acronyms and techniques 
are presented in Ref. [16], it is possible to find the Pareto 
optimal (P-optimal), which represents the ensemble of 
non-dominated solutions. Within the P-optimal, a user can 
choose the nominal machine working point, 
corresponding to one single element of the P-optimal. 
When plotted in 2D (two objectives) the non-dominant 
points curve (the Pareto front) is a powerful tool to better 
understand the machine behaviour. Usually this curve is 
the solution of a differential equation. 
 Conversely, GIOTTO has been developed following the 
single criterion or single objective function, and cannot be 
classified as a MOGA. This choice, which seems to buck 
the trend, brings instead some important advantages, as 
for example the fact that the niching strategy, inside the 
population, became unnecessary, simplifying the 
algorithm and its execution. Furthermore, in MOGA the 
concept of elitism is more complex and not 
straightforward as for a single criterion approach and the 
convergence on one single point simplifies all the 
optimization strategy. The drawback in case of more than 
one criteria, as typical in BD problems or beam line 
optimizations has been circumvented by a peculiar 
definition of the GIOTTO’s fitness function, as explained 
in the following section. 

THE FITNESS FUNCTION 
The GIOTTO fitness function is a single criterion with 

respect to the goodness of a solution (of a chromosome, 
in GA’s language). This function returns one real value 
which permits the chromosome sorting inside a 
generation and which enters in the selection rules. The 
chromosome showing the higher value in one generation 
is the best of that generation itself, and it reproductions in 
the next offspring gives rise, directly, to the elitism.  

The fitness function is defined into the GIOTTO’s input 
file through an equation (or more), by using the reverse 
polish notation (rpn) for a practical computational point 
of view (data stacking) and for a neater visualization. The 
equation can be split in more lines, simplifying complex 
expressions. During the code execution, each line, which 
is itself an equation, can be plotted, showing on line the 
optimization evolution. Because the GIOTTO’s input file 
is reloaded each new generation, it is possible to change 

the fitness function in real time, giving to the user a really 
great advantage.  Fig. 1 shows a section of the input file 
in relation to the fitness function insert mode. A routine 
unrolls the input-file looking for the key-word “idoneity”, 
and, once it is found, recognizes every consecutive line as 
a rpn piece of the equation. The routine counts the 
consecutive lines, to know in how many pieces the 
function is split, then brings together the pieces using the 
last operator on each line, exactly as in the rpn. In the 
example reported in Fig. 1, the equation is spit in three 
pieces that are added up by the ‘+’ operators at the end of 
the second and third expressions.      

 

 
Figure 1: Section of the GIOTTO’s input file in relation 
to the fitness function input method 

 
One important feature this equation insertion method is 

based on, and that can be fully controlled by the user, is 
the possibility to implement the following strategy: each 
piece of the equation can be related to a single 
optimization criterion, which moves on a Gaussian curve 
(Fig. 2).    

This strategy is the technique used by GIOTTO to deal 
with multi objective problems. It consists in to assign one 
single optimization criterion to each piece of the equation, 
as shown in the Fig. 1 where, referring to an electron 
bunch distribution, the emittance (emitX) is assigned to 
the first piece, the rms longitudinal dimension (sigZ) to 
the second one and the rms transversal dimension to the 
third piece of the equation. The three pieces (themselves 
equations), has said above, are added up, returning one 
single value. The trick is to use Gaussian equations type, 
in such a way to define regions where the objective can be 
considered achieved or close to be, and regions where the 
objective is far to be reached. These regions are a 
practical way to define different weights. An almost 
reached objective means to be close to the goal, which 
corresponds to the region close to the top of the Gaussian 
curve, where the slope versus the parameter variation is 
very small. The “far region”, always referring to the 
objective optimization, corresponds instead to the 
maximum slope of the Gaussian curve. With this 
definition of the fitness function it is very easy to change 
different weights in multi objective problems, driving all 
the optimizations by only one real value. It is 
straightforward to understand the potentiality of being 
able to change the fitness function in real time. This 
capability is still only in the actual GIOTTO beta version, 
but outstanding results [8,17,18] has already been found 
also keeping the fitness function unchanged, the only 
caution is to check that the objectives, at the optimization 
start, (red stars in Fig. 2, a) case) are not on the Gaussian 
tails. 
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Figure 2: Graphical representation of the fitness function 
equation pieces. a) Offspring not yet optimized, b) 
offspring satisfying the optimization 

 
Another characteristic that deserves to be mentioned is 

the free control of each Gaussian height, which changes 
the optimization slope and also defines the maximum 
reachable value. As shown again in Fig. 1 (pay attention 
to the rpn formalism), or in Fig.2, all the three Gaussian 
curves have a maximum height of 50, so the maximum 
reachable value is 150, which is reached asymptotically 
and defines the method that stops the optimization 
procedure.  

This implementation of a fitness function by adding up 
Gaussian-like curves, one per objective and obtaining one 
single value, is named in this paper GAMOGA (Gaussian 
Multi-Objective GA). Hints of the method can be found 
the Ref.’s [19, 20] 

 

GIOTTO GA’S FEATURES 
GIOTTO is a Real-coded GA and uses a roulette-wheel 

selection, with a single point crossover operator. If during 
the selection two equal chromosomes are chosen, the 
selection is redone. This is a quite rare event, except for 
peculiar cases, when the offsprings lack in differentiation. 

The optimization process starts from a first generation 
of chromosomes (solutions of the problem), which can be 
given by the user with sharp values (known good 
solutions of the problem) or can be generated around a 
central value with a variation range. Also in the case of 
sharp values by one known solution, the variation ranges 
have to be provided, because they are used by the 
mutation and regenerator operators (see below). 

The mutation operator – which intervenes each new 
offspring, with a very small probability, but a little higher 
than for binary-coded GA (as commonly known) – works 
only on one allele (one parameter) per chromosome and, 

when the optimization stagnates, the probability to 
intervene is enhanced, step by step, up to a maximum 
value where it stays constant. The sampling around the 
starting allele value (first population) can be done with a 
plane probability or with a Gaussian one. 

Periodically, after a number of user-defined new 
generation steps, the population is regenerated 
(regeneration operator) around the best chromosome, 
keeping alive the best chromosome itself (elitism 
operator). The regeneration, similarly to the mutation, 
uses the starting central allele and the user-defined range. 
To force the convergence on close solutions, a small 
variation of the genetic material (alleles) is necessary. 
This is done shrinking the allele’s variation range during 
the regeneration. After a user-defined number of 
regenerations, the ranges are reopened to the original 
value, avoiding the stagnation in local optimization. The 
regeneration operator is very powerful and usually 
speeds up significantly the optimization process, but it 
can be also dangerous, and the parameters has to be 
controlled accurately. The parameters accessible to the 
user are: 1) after how many new generations the operator 
starts up, 2) the range shrink percentage and 3) after how 
many refining the ranges is reopened. For the sake of 
completeness let us see some numbers: considering a 
population composed by 16 chromosomes, 6 alleles each, 
and two objectives, with the three regeneration operator 
parameters set, following the above order, 25, 5, 4, after 
about 300 offsprings it is possible to reach the 
convergence; working on 2009, 16 cores, shared memory, 
machine, the computation takes about 3-5 hours. Without 
the regeneration operator and with a so little population 
(16 chromosomes) it should be impossible to reach the 
convergence, except with a very long computation time. 

 
 

OTHER CAPABILITIES 
An exhaustive description of important characteristics 

and capabilities of GIOTTO cannot been explained in few 
pages and it is not in the purposes of this proceeding. 
Differently, the full description of the fitness function and 
GA’s features, as given in the previous sections, is 
essential to understand basic features, as for instance the 
fact that GIOTTO is not a MOGA and consequently the 
approach to multi objective problems. 

It is important to point out that it is possible to insert 
evolution constraints, again by using equations into the 
input file, which have to be satisfied. Due to the parallel 
implementation, GIOTTO can be switched from the 
genetic optimization to a statistical analysis; by using this 
characteristic the full jitters analysis of the ELI-NP 
injector has been performed. GIOTTO is fully portable, 
by a standard Fortran native source and at the moment the 
MPI Windows and Linux version are released.   
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