
GIOTTO: A GENETIC CODE FOR DEMANDING BEAM-DYNAMICS
OPTIMIZATIONS

A. Bacci, INFN/Milan, Italy
V. Petrillo, M. Rossetti Conti, Univ. of Milan, Milano, Italy

Abstract
GIOTTO is a software based on a Genetic Algorithm

(GA). Its development started in 2007 with a work
published on NIMB (263, 2007, 488-496) and presented
at PAC07 (THPAN031). When the parameters, defining
an acceleration machine beam line, are strongly correlated
in nonlinear way, the GAs are a powerful tool to coup
with these difficulties. These conditions are typically
generated by space-charge, as in the high brightness e-
beam photo-injectors or when the Velocity Bunching
compression technique (VB) is used. The power of
GIOTTO is the adaptability to different cases, given by its
own structure that permits to drive different external
codes in series, the possibility to define a user dependent
multi objective fitness function and function constraints
on the beam dynamics, as well as the possibility to turn
off the genetic optimization to perform statistical analysis
(machine jitters). Up today it has been used in
Thomson/Compton sources, ultra-short e-bunches
generation by VB, focusing channel and dog-leg lines
optimizations.

INTRODUCTION
In the last few years, in the field of accelerator physics

and beam dynamics (BD), many works on problem
solving and optimizations based on GAs have been
produced. Even though the GAs have been introduced in
the ‘70s with the well-known first monograph of John
Holland (1975) [1], and already in the ‘90s GAs in
various forms have been applied to problems in topics
spanning from engineering, economics and artificial
intelligence [2-4], in the accelerator physics and beam
dynamics these optimization techniques are relatively
young.

The improvement in the high brightness electron beams
of the last few years has produced really important results
in different fields, as for instance: the implementation of
XUV and X rays Free Electron Lasers [5], the
acceleration in plasma wave [6] or the Thomson
scattering sources [7]. The production of such high
quality brightness beams is always relate to an
outstanding capability to tune the electron injector [8] and
to cope with the bunch space charge. The space charge
effects couples in a non-linear way the beam-line
parameters. Giving an example, a good emittance
compensation [9], downstream a Gun photon-injector, is
mainly connected to the following issues: a) the laser
pulse shaping at the cathode, b) the extracted charge, c)

the Gun gradient, d) the Gun’s solenoid intensity and e)
the position of the first booster cavity. All these
parameters are coupled each other in a complex way by
the space-charge, making impossible a sequential
optimization of the parameters; this fact is true not only
from the experimental point of view, but even for the
simulations. Such kind of problems, non-linear and
multidimensional, are typically well faced by using GAs.
Their stochastic nature prevents the convergence on weak
local minima and, furthermore, the parallel structure is
appealing for time consuming optimizations.

GIOTTO (Genetic Interface for OpTimising Tracking
with Optics) is the evolution of a previous software, based
on a GA [10, 11]. References [10, 11] have been
commonly used to cite GIOTTO itself and are among the
first works based on GAs for performing beam dynamics
optimizations, driving simulation codes.

THE SOFTWARE
GIOTTO is based on a homemade GA. The development,
done in modern Fortran, has been carried out by using
high level structures, like ad hoc methods and operators,
which give to the code an easily modifiable or upgradable
structure [12]. GIOTTO, in most of its applications, starts
by driving the tracking code Astra [13] and its generator
and by using all their parameters as possible knobs for
optimizations. The interface between GIOTTO and Astra,
or Astra’s generator, hosts in itself the capability to easily
write and to easily manipulate input files. This capability
has been implemented in a generalized way, making
GIOTTO potentially able to drive different codes. Inside
the code is in fact is present an Input Names Data Base
(INDB) that can be expanded as needed, inserting all the
parameters (the Input Names) necessary to write a code’s
input file. This methodology has been developed by using
the Fortran namelist NML, so if a code is driven with
NML input files, that code can be naturally used, or
driven, by GIOTTO. In different way, for managing other
ASCII input files it is necessary an interface.
For the sake of clarity, let we think to perform an
optimization on a beam dynamic problem that copes with
different laser pulse shaping (at the photocathode) and
with different electron beam line settings downstream the
gun. To perform such optimization, GIOTTO writes both
the Astra’s generator and Astra input file, then runs the
two codes in sequence. This procedure has been thought
to be really easily extendible to more in cascade codes.
For example it has been already tested in the sequence:

Proceedings of IPAC2016, Busan, Korea WEPOY039

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-147-2

3073 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Astra’s generators → Astra → Fluid tracking code for
plasma accelerators or Astra → Parmela [14] →
ThomXcode. Moreover, GIOTTO is a parallel code,
developed by using the MPI library, so just to mention,
when GIOTTO runs a cascade of codes, it means that N
sequences are executed, in relation to the number of
nodes it is running on. GAs by their own nature are ad
hoc to be parallelized.
Nowadays many GA types of software are based on the
Multi Objective typology (referred to as MOGA) [15].
These kind of GAs are useful when several optimization
criteria are present simultaneously and it is difficult or
impossible to combine them in a single value (referred to
as fitness function). In these cases, by peculiar
evolutionary technique, referred as VEGA, MOEAs,
MOGA, NSGA, NPGA, where acronyms and techniques
are presented in Ref. [16], it is possible to find the Pareto
optimal (P-optimal), which represents the ensemble of
non-dominated solutions. Within the P-optimal, a user can
choose the nominal machine working point,
corresponding to one single element of the P-optimal.
When plotted in 2D (two objectives) the non-dominant
points curve (the Pareto front) is a powerful tool to better
understand the machine behaviour. Usually this curve is
the solution of a differential equation.
 Conversely, GIOTTO has been developed following the
single criterion or single objective function, and cannot be
classified as a MOGA. This choice, which seems to buck
the trend, brings instead some important advantages, as
for example the fact that the niching strategy, inside the
population, became unnecessary, simplifying the
algorithm and its execution. Furthermore, in MOGA the
concept of elitism is more complex and not
straightforward as for a single criterion approach and the
convergence on one single point simplifies all the
optimization strategy. The drawback in case of more than
one criteria, as typical in BD problems or beam line
optimizations has been circumvented by a peculiar
definition of the GIOTTO’s fitness function, as explained
in the following section.

THE FITNESS FUNCTION
The GIOTTO fitness function is a single criterion with

respect to the goodness of a solution (of a chromosome,
in GA’s language). This function returns one real value
which permits the chromosome sorting inside a
generation and which enters in the selection rules. The
chromosome showing the higher value in one generation
is the best of that generation itself, and it reproductions in
the next offspring gives rise, directly, to the elitism.

The fitness function is defined into the GIOTTO’s input
file through an equation (or more), by using the reverse
polish notation (rpn) for a practical computational point
of view (data stacking) and for a neater visualization. The
equation can be split in more lines, simplifying complex
expressions. During the code execution, each line, which
is itself an equation, can be plotted, showing on line the
optimization evolution. Because the GIOTTO’s input file
is reloaded each new generation, it is possible to change

the fitness function in real time, giving to the user a really
great advantage. Fig. 1 shows a section of the input file
in relation to the fitness function insert mode. A routine
unrolls the input-file looking for the key-word “idoneity”,
and, once it is found, recognizes every consecutive line as
a rpn piece of the equation. The routine counts the
consecutive lines, to know in how many pieces the
function is split, then brings together the pieces using the
last operator on each line, exactly as in the rpn. In the
example reported in Fig. 1, the equation is spit in three
pieces that are added up by the ‘+’ operators at the end of
the second and third expressions.

Figure 1: Section of the GIOTTO’s input file in relation
to the fitness function input method

One important feature this equation insertion method is

based on, and that can be fully controlled by the user, is
the possibility to implement the following strategy: each
piece of the equation can be related to a single
optimization criterion, which moves on a Gaussian curve
(Fig. 2).

This strategy is the technique used by GIOTTO to deal
with multi objective problems. It consists in to assign one
single optimization criterion to each piece of the equation,
as shown in the Fig. 1 where, referring to an electron
bunch distribution, the emittance (emitX) is assigned to
the first piece, the rms longitudinal dimension (sigZ) to
the second one and the rms transversal dimension to the
third piece of the equation. The three pieces (themselves
equations), has said above, are added up, returning one
single value. The trick is to use Gaussian equations type,
in such a way to define regions where the objective can be
considered achieved or close to be, and regions where the
objective is far to be reached. These regions are a
practical way to define different weights. An almost
reached objective means to be close to the goal, which
corresponds to the region close to the top of the Gaussian
curve, where the slope versus the parameter variation is
very small. The “far region”, always referring to the
objective optimization, corresponds instead to the
maximum slope of the Gaussian curve. With this
definition of the fitness function it is very easy to change
different weights in multi objective problems, driving all
the optimizations by only one real value. It is
straightforward to understand the potentiality of being
able to change the fitness function in real time. This
capability is still only in the actual GIOTTO beta version,
but outstanding results [8,17,18] has already been found
also keeping the fitness function unchanged, the only
caution is to check that the objectives, at the optimization
start, (red stars in Fig. 2, a) case) are not on the Gaussian
tails.

WEPOY039 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

3074C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques

Figure 2: Graphical representation of the fitness function
equation pieces. a) Offspring not yet optimized, b)
offspring satisfying the optimization

Another characteristic that deserves to be mentioned is

the free control of each Gaussian height, which changes
the optimization slope and also defines the maximum
reachable value. As shown again in Fig. 1 (pay attention
to the rpn formalism), or in Fig.2, all the three Gaussian
curves have a maximum height of 50, so the maximum
reachable value is 150, which is reached asymptotically
and defines the method that stops the optimization
procedure.

This implementation of a fitness function by adding up
Gaussian-like curves, one per objective and obtaining one
single value, is named in this paper GAMOGA (Gaussian
Multi-Objective GA). Hints of the method can be found
the Ref.’s [19, 20]

GIOTTO GA’S FEATURES
GIOTTO is a Real-coded GA and uses a roulette-wheel

selection, with a single point crossover operator. If during
the selection two equal chromosomes are chosen, the
selection is redone. This is a quite rare event, except for
peculiar cases, when the offsprings lack in differentiation.

The optimization process starts from a first generation
of chromosomes (solutions of the problem), which can be
given by the user with sharp values (known good
solutions of the problem) or can be generated around a
central value with a variation range. Also in the case of
sharp values by one known solution, the variation ranges
have to be provided, because they are used by the
mutation and regenerator operators (see below).

The mutation operator – which intervenes each new
offspring, with a very small probability, but a little higher
than for binary-coded GA (as commonly known) – works
only on one allele (one parameter) per chromosome and,

when the optimization stagnates, the probability to
intervene is enhanced, step by step, up to a maximum
value where it stays constant. The sampling around the
starting allele value (first population) can be done with a
plane probability or with a Gaussian one.

Periodically, after a number of user-defined new
generation steps, the population is regenerated
(regeneration operator) around the best chromosome,
keeping alive the best chromosome itself (elitism
operator). The regeneration, similarly to the mutation,
uses the starting central allele and the user-defined range.
To force the convergence on close solutions, a small
variation of the genetic material (alleles) is necessary.
This is done shrinking the allele’s variation range during
the regeneration. After a user-defined number of
regenerations, the ranges are reopened to the original
value, avoiding the stagnation in local optimization. The
regeneration operator is very powerful and usually
speeds up significantly the optimization process, but it
can be also dangerous, and the parameters has to be
controlled accurately. The parameters accessible to the
user are: 1) after how many new generations the operator
starts up, 2) the range shrink percentage and 3) after how
many refining the ranges is reopened. For the sake of
completeness let us see some numbers: considering a
population composed by 16 chromosomes, 6 alleles each,
and two objectives, with the three regeneration operator
parameters set, following the above order, 25, 5, 4, after
about 300 offsprings it is possible to reach the
convergence; working on 2009, 16 cores, shared memory,
machine, the computation takes about 3-5 hours. Without
the regeneration operator and with a so little population
(16 chromosomes) it should be impossible to reach the
convergence, except with a very long computation time.

OTHER CAPABILITIES
An exhaustive description of important characteristics

and capabilities of GIOTTO cannot been explained in few
pages and it is not in the purposes of this proceeding.
Differently, the full description of the fitness function and
GA’s features, as given in the previous sections, is
essential to understand basic features, as for instance the
fact that GIOTTO is not a MOGA and consequently the
approach to multi objective problems.

It is important to point out that it is possible to insert
evolution constraints, again by using equations into the
input file, which have to be satisfied. Due to the parallel
implementation, GIOTTO can be switched from the
genetic optimization to a statistical analysis; by using this
characteristic the full jitters analysis of the ELI-NP
injector has been performed. GIOTTO is fully portable,
by a standard Fortran native source and at the moment the
MPI Windows and Linux version are released.

Proceedings of IPAC2016, Busan, Korea WEPOY039

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-147-2

3075 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

REFERENCES
[1] J. H. Holland, Adaptation in Natural and Artificial

Systmes. Ann Arbor, MI: Univ. Michigan, 1975.

[2] S. Bengley, “Software au naturel” Newsweek, pp.
70.71, May 8, 1995.

[3] R. A. McIntyre, “Bach in Box: The evolution of four
part Baroque harmony using the genetic algorithm” in
Proc. IEEE Conf. Evolutionary Computat., Orlando,
FL June 1994, pp., 852-857.

[4] J. Ventrella, “Disney meets Darwin – The evolution
of funny animated figures”, in Proc. Comput. Animat.
Geneva, Switzerland, Apr. 1995, pp.35-43.

[5] Y. Ding, et al. PRL 102 (2009).

[6] M. Litos, et al, NATURE, Vol. 515, 6 Nov. 2014, pag.
93.

[7] arXiv:1407.3669 [physics.acc-ph].

[8] A. Bacci et al., J. Appl. Phys. 113 (2013) no.19.

[9] L. Serafini, J.B. Rosenzweig . PRE, Vol. 55, N. 6,
Jun 1997.

[10] A. Bacci, V. Petrillo, A. R. Rossi, L. Serafini,
Proceedings of PAC07, Albuquerque, New Mexico,
USA, THPAN031.

[11] A. Bacci et al., Nucl. Instrum. Methods Phys. Res. B,
263,488-496 (2007).

[12] Ed Akin, book “Object Orineted Programming via
Fortran 90/95”, Cambridge Univ. Press, (2003).

[13] K. Floettmann, ASTRA User`s Manual,
http://www.desy.de/~mpyflo/Astra_manual/.

[14] L. M. Young, LANL Report No. LA-UR-96-1835.

[15] S. B. van der Geer, M.J. de Loos, MOPJE076,
Proceeding of IPAC2015, Richmond, VA, USA.

[16] M. Laumanns, et al., “Combining Convergence and
Diversity in Evolutionary Multiobjective
Optimization” Evolutionary computation Vol 10 No
3, pp 263 (2002).

[17] A. Bacci, A. R. Rossi, NIM-A 740 (2014) 42-47.
[18] C. Vaccarezza, et al., “OPTIMIZATION STUDIES FOR

THE BEAM DYNAMIC IN THE RF LINAC OF THE ELI-
NP GAMMA BEAM SYSTEM”, presented at IPAC’16,
Busan, Korea, May 2016, paper TUPOW042, this
conference.

[19] D. Büche, N. N. Schraudolph, P. Koumoutsakos, IEEE
TRAN. ON SYSTEMS, MAN, AND CYBERNETICS –
PART C, APP. AND REVIEWS, VOL 35, NO. 2, MAY
2005.

[20] M. Zhang, W. Smart, Pattern Recognition Letters 27 (2006)
1266-1274.

WEPOY039 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

3076C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques

