
A PARALLELIZED VLASOV-FOKKER-PLANCK-SOLVER FOR
DESKTOP PCS

P. Schönfeldt∗, M. Brosi, J. L. Steinmann, and A.-S. Müller
Karlsruhe Institute of Technology , Karlsruhe, Germany

Abstract
In order to simulate the dynamics of an electron bunch

due to the self-interaction with its own coherent synchrotron
radiation it is a well established method to numerically solve
the Vlasov-Fokker-Planck equation. In this paper we present
a modularly extensible program that uses OpenCL to mas-
sively parallelize the computation, allowing a standard desk-
top PC to work with appropriate accuracy and yield reliable
results within minutes. We provide numerical stability stud-
ies over a wide parameter range and compare our numerical
findings to known results.

INTRODUCTION
Improvements in the online study of the micro-bunching

instability [1] created a demand for fast simulations that are
able to map the dynamics of micro-bunching over a wide
range of physical parameters. Also the simulation tool itself
should be well understood so that the influences of both the
simulated physics and of numerical effects can be studied
and separated.
The phenomenon of micro-bunching happens in the lon-

gitudinal phase space which is spanned by the position z and
the energy E. Taking the particle density ψ(z,E) of elec-
trons in a storage ring to be a smooth function, its evolution
can be described by the Vlasov-Fokker-Planck equation. It
reads
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with the generalized coordinates q = z/σz,0, and p =
(E − E0)/σδ,0, the Hamiltonian H , the reference particle’s
energy E0, and the damping time τd . The quantities σδ,0
and σz,0 describe energy spread and bunch length, both in
the equilibrium state that exists for small bunch charges.

To solve this partial differential equation there is a widely
used formalism by Warnock and Ellison [2]. It uses a grid to
discretizeψ(q,p) and assumes that the collective force due to
self-interaction with the bunch’s own coherent synchrotron
radiation is constant for small time steps. The perturbation
due to the collective effects is described as a perturbation to
the Hamiltonian

H (q,p, t) = He (q,p, t)︸      ︷︷      ︸
external fields

+ Hc (q, t)︸   ︷︷   ︸
collective effects

=
1
2

(
q2 + p2

)
+ Qc × Vc (Zc ,q, t), (2)
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where Qc is the charge involved in the perturbation, and Vc

is the potential due to the collective effect, which can be
expressed in terms of an impedance Zc .

It is then possible to use the homogeneous solution, which
in unperturbed case is represented by a rotation in phase
space, and add the influence of diffusion and damping as a
particular solution. To model the perturbation, the influence
of Vc is applied as a ‘kick’ along the energy axis.

IMPLEMENTATION
The program discussed in this paper splits the direct im-

plementation of each of the simulation steps f : (q,p) →
(q′,p′) that compose one time step (rotation, kick, damping
and diffusion) into two steps. This method – by construction
– produces the same results as the single-step implementa-
tion. All information on the actual coordinates (q,p) is only
needed by the first half simulation step. We call its result a
‘source map’ (SM). In the second half step one dimension
of the original transformation f : R2 → R2 is no longer
needed, yielding fSM : R1 → R1. Practically speaking, this
map holds the information which data of the current simula-
tion step contributes to a grid point for the next simulation
step. For many functions – such as rotation – the SM will
look the same for the whole runtime of the program. For
that reason it only has to be computed once and can be kept
for multiple usages.
The source map formalism does not only allow to keep

intermediate results, it also gives a handy interface to imple-
ment arbitrary functions that act on the phase space. Further-
more the reduction of the problem’s dimension may also lead
to a speed up. Results of a benchmark of the computational
performance are shown in Fig. 1.

Figure 1: Computational time needed by an Intel Core i5
4258U for 1000 cubically interpolated rotation steps using
different implementations. In this test case the grid has 512
points per axis, no optimizations (besides SM) are used.

In this case source mapping alone (SM 2D) brings a
speedup of one third, while reducing the dimension (SM 1D)
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in total halves the runtime. A further speedup is achieved
by using parallelization (OpenCL [3]), which we imple-
mented for the abstract SM (SM CL). A second advantage of
OpenCL is that it can utilize not only multi-core CPUs but
also graphic processors. In total, a non-optimized program
takes more than 9 days for a typical simulation run. Using
the method described above, it can be reduced to 80 minutes
– using a customer grade graphics card.

NUMERICAL ARTIFACTS
There are different contributions to numerical inaccura-

cies. For real numerical artifacts we identified two main
sources: interpolation and numerical derivatives. As an ex-
ample we take a current distribution that for a simulation run
that uses cubic interpolation stays in a pseudo-stable state,
which, however, exists above the expected bursting thresh-
old (at SCSR = 0.5 [4]). The complete set of simulation
parameters is listed in Table 1.

Table 1: Parameters for an example run to check for numer-
ical artifacts. For the given set no artifacts were observed.
Changing to quadratic interpolation however, triggered the
occurrence of (non-physical) structures with a period length
of one grid cell.

Parameter Value
Grid points per axis 256
Steps per Ts 4000
Interpolation method cubic
Impedance model free space
CSR strength SCSR 0.516
Damping time 200 Ts

We also run a simulation with the same parameters ex-
cept that quadratic interpolation is applied. If there was no
influence of the different interpolation schemes, one would
expect no difference between the two runs. However, as
Fig. 2 depicts, this is not guaranteed.

Figure 2: Evolution of the energy spread over time. For
the case where cubic interpolation was used (dashed black
line) the energy spread stays at σE ≈ 1σδ,0. When using
quadratic interpolation (solid blue line) an increase can be
observed at T = 1 Ts .

The energy spread simulated using quadratic interpola-
tion rapidly increases to a higher value after one synchrotron
period (T = 1 Ts). Such a behavior can be interpreted as
evidence that the simulated conditions are above the micro-
bunching threshold [4]. However, we want to track the evolu-
tion of the charge distribution, so we have to avoid numerical
artifacts as they occur in the run using quadratic interpola-
tion (depicted in Fig. 3): The period length of the ripples
is exactly two grid cells, and they continue to exist even
to a point where they create negative charge densities. In
this particular case, the instability is clearly triggered by the
artifacts (overshoots) of the interpolation.

Figure 3: Bunch profiles of the simulation run using
quadratic interpolation at selected points in time (cf. blue
discs in Fig. 2). The bunch profiles computed during the ini-
tial increase of the energy spread (solid lines) show ripples
with a period length of two grid cells. The earlier and later
profiles (dashed lines) do not show such structures. This
implies that the increase of energy spread is driven by a
numerical instability.

For the numerical differentiation the same type of arti-
facts can occur. This can be explained by the fact that the
algorithm usually used for numerical differentiation [5] is
equivalent to differentiating the quadratic interpolation poly-
nomial P2

∂ f (x)
∂x

����x0 ≈
f (x0 + ∆x) − f (x0 − ∆x)

2∆x
=
∂P2(x)
∂x

����x0 .

As a consequence, we target the problem by using the
cubic interpolation polynomial P3, and obtain

∂ f (x)
∂x

����x0 ≈
−2 f (x0 − ∆x) − 3 f (x0)

6∆x

+
6 f (x0 + ∆x) − f (x0 + 2∆x)

6∆x
=
∂P3(x)
∂x

����x0 . (3)

In our tests we did not find any case where a more com-
plex differentiation method than the one described above
was needed to avoid artifacts. But note that also higher order
polynomials show overshoots. To completely rule out this
source of artifacts, one has to use clamped or saturated inter-
polation functions. In contrast to the differentiation, there
were rare cases where we observed rotation artifacts that we
had to suppress by clamping – which restricts interpolation
to the range of the neighboring values.
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CONVERGENCE STUDIES
In this sectionwe compare the effect of different numerical

settings, which – in an ideal world – would not effect the
physical result. We also compare different implementations
of the necessary simulation steps to solve Eq. 1. For example,
it is possible to implement the rotation in phase space or
to implement it as an energy-dependent drift together with
a location dependent RF kick. In this paper the second
approach will be referred to as ‘Manhattan rotation’.

For the sake of simplicity we go back to the unperturbed
case (meaning Hc = 0 in Eq. 2). So any starting distribution
should converge to a normal distribution with σq = σp = 1.

Figure 4: Damping of the RMS energy spread for different
numbers of computation steps per synchrotron period. Every
color represents a different number of simulation steps per
synchrotron period. In absolute numbers all simulations
deliver strictly monotonic functions, the (common) initial
offset is explained by an imperfect starting distribution. To
make the differences more clear, the theoretical behavior
(σδ, t = A × exp(−t/τ) + σδ,0) has been subtracted from
the simulated one (σδ,s). Manhattan rotation (dashed lines)
reproduces the set values (τ = 150Ts , solid grey line) better
than standard rotation (other solid lines). Also note that the
error increases when the number of steps per synchrotron
period becomes too big.

In one example series of tests we observe the evolution
of a normal distributed charge density with σq = σp = 2.8
where the damping time is set to τ = 150Ts . The Num-
ber of simulation steps per Ts is varied between 500 and
4000. As depicted in Fig. 4 for all settings a clear expo-
nential damping is observed. For Manhattan rotation the
error on the reconstructed values is significantly (maximum
1%, usually� 1%) lower than for standard rotation (1% up
to 2.5%). Furthermore Manhattan rotation is more robust
against changing step sizes.
In another example we study the evolution of a normal

distributed charge density with σq = σp = 1. From the
physics point of view it is expected that the distribution stays
constant with time. What can be observed (see Fig. 5), how-
ever, is that σp converges to different values depending on
the numerical parameters. Especially for standard rotation,

Figure 5: Evolution of the RMS energy spread for different
grid sizes. Manhattan rotation (dashed lines) reproduces
the expected value (σδ, t = σδ,0, solid grey line) better than
standard rotation (other solid lines).

increasing the grid size first makes the result more accu-
rate until an optimum is reached. Further increasing the
grid size leads to an increased difference from the expected
value. Again, as for different step sizes, Manhattan rotation
produces the better and more reliable results also in this
case.

SUMMARY
We introduced a Vlasov-Fokker-Planck-solver that uses

OpenCL for parallelized computation. Doing this it can
simulate the dynamics of the longitudinal phase space us-
ing desktop PCs more than 100 times faster than a non-
optimized implementation, or even 150 times faster when
using a dedicated (customer class) graphics card. Further-
more, we eliminated sources of numerical artifacts and have
done numerical stability studies to show that relative errors
can be reliably kept clearly below 1%.
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