
NSLS-II DEDICATED PYTHON TOOLS FOR SIMULATION AND

ANALYSIS∗

J. Choi†, BNL, Upton, NY 11973, USA

Abstract

Python is a high-level interpreted programming language.

Despite its slow benchmarks, because of its fast coding cycle

and dynamic property, the users are increasing fast in all ar-

eas. Also, because it does not need special care for the mem-

ory management, both professional and non-professional

programmers can easily make bug-free code just by con-

centrating on logics. Furthermore, fast increasing libraries

are making the language more and more useful. With these

advantages, we developed python tools which simulate and

analyze the particle accelerator with some parts being dedi-

cated to NSLS-II operation.

INTRODUCTION

Since we chose Python [1] as the programming language

of NSLS-II high level application [2], many high level ap-

plications for machine operation and study were developed

with Python in the collaboration between control and physics

group. One of the list was developing Python interface for

the TRACY-2 [3] which was adopted as the simulation code

for the NSLS-II virtual machine [4]. By wrapping TRACY-

2 with SIP [5], a convenient python library was developed

named PyTracy [6] and it was proved very useful calling

TRACY-2 functions from python code.

However, as we develope more and more high level soft-

wares using PyTracy, the strict limitations begin to be showed

clearly. That is, we wanted full implementation of objective

property of the language for the lattice elements but the in-

terface points only the whole element and could not directly

access a property of an element nor modify it individually.

Therefore, parallel to the wrapping of TRACY-2, we made

pure Python code which makes every element in the lattice

as Python object and the lattice is a Python list.

This code is named as N2Track because some parts are

dedicated only to NSLS-II storage ring. For example, it has

information about EPICS PVs for magnet power supplies

and conversion table between hardware and physics units.

Thereby, it can construct live lattice by accessing the control

system.

MODULES

As usual, N2Track consists of various modules depending

on functionalities. The modules having functions directly

called by users are as follows.

Globvalrec Using this module, one can be set or get the

global parameters. The examples are energy and flags

∗ Work supported by DOE contract No: DE-SC0012704
† jchoi@bnl.gov

which decide whether the radiation and RF will be in-

cluded in the tracking. Also the resulting parameters

are kept whenever calculated, such as tunes, chromatic-

ities, one-turn map, twiss values at origin, emittance,

radiation loss and others.

latticeTools Most NSLS-II specific functions are in this

module. Using this module, one can generate specific

NSLS-II lattice and find indices for specific elements.

Also, it has functions giving the family properties even

based on magnet design model.

tracyIn and elegantIn Actually, because official lattice is

distributed in the ELEGANT [7] input format, the

NSLS-II lattice making function is using the function

in the elegantIn module. Using these modules, one

can read both the TRACY-2 and ELEGANT format.

However, only part of ELEGANT element types and

attributes are recognized.

Family Family information of the elements.

Element Using this module, one can access every property

in the element to get its value or modify it. By doing

modification after the lattice is read, N2Track provides

much more flexibility than conventional codes.

util This module has interface functions for physical cal-

culation. The typical ones are calculating closed orbit

and twiss parameters. Then save all results in the ap-

propriate places.

miaTools This is an auxiliary module helping analyzing

the turn-by-turn data using model indecent analysis

(MIA) [8].

archiveTools This is dedicated module to NSLS-II which

are helping analyzing the data from the NSLS-II archive

system.

BASIC USES

In this section, some basic uses common to all simulation

codes, such as reading input file, calculate twiss values, are

shown.

Construct NSLS-II lattice and generate the element list.

Using tracyIn or elegantIn module, the lattice files can be

directly read in. However, N2Track provides higher level

input method for NSLS-II storage ring where the lattice type,

whether it is a bare lattice or DWs are closed, is accepted

as an argument. Once the lattice is constructed, it returns

Globvalrec object and Python lists for families and elements.

THPOY021 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

4134C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

Globval,Fams,Lattice=latticeTools.genNSLS2Lattice()

default: Bare lattice

The above snippet is equivalent to the following.

create globvalrec object

Globval = globvalrec.globvalrec()

create Family and Element list

Fams,Lattice=

elegantIn.constructBL(Globval, "nsls2sr.lte")

import the unit conversion information

util.setConversion(Globval,Lattice)

if several elements with same kind are found in one

place, combine them into one element

Fam,Lattice = util.simplify(Fam,Lattice)

import the magnet design model information

util.registerModel(Lattice)

Get the closed orbit at BPM positions and plot them.

import matplotlib.pyplot as plt

find the BPM positions as indices in the lattice

mons=latticeTools.getBPMindex(Lattice)

calculate the closed orbit by iteration

util.getCOD(Globval, Lattice)

BPM positions

s_bpm=[Lattice[m].S for m in mons]

horizontal closed orbit

cod_x = [Lattice[m].BeamPos[0,0] for m in mons]

vertical closed orbit cod_y =

[Lattice[m].BeamPos[0,2] for m in mons]

plt.plot(s_bpm, cod_x) plt.plot(s_bpm, cod_y)

plt.show()

Calculate the Twiss parameters and print the tunes.

util.getTwiss(Globval, Lattice)

print(Globval.TotalTune)

Read the Twiss parameters from the lattice elements and

save them as Pyhon lists.

betax = [ele.Beta[0,0] for ele in Lattice]

betay = [ele.Beta[0,1] for ele in Lattice]

alphax = [ele.Alpha[0,0] for ele in Lattice]

alphay = [ele.Alpha[0,1] for ele in Lattice]

nux = [ele.Nu[0] for ele in Lattice]

nuy = [ele.Nu[1] for ele in Lattice]

UNIQUE FEATURES

As a Python application, we can think two major advan-

tages. First, because each lattice element is a Python object

and the lattice is a Python list, we can modify them dynami-

cally. The other advantage is that we can use Pyhon libraries,

such as NumPy [9] and SciPy [10], seamlessly at any place.

In this section, some examples are shown which, when us-

ing the conventional application, could be quite complicated

or sometimes cannot be implemented.

Obtain the interpolated Twiss.

Twiss values are calculated at each element, using the

interpolation methods provided by SciPy, we can plot the

Twiss values as smooth functions. This is possible because

the derivatives are also in Twiss parameters too and this tool

is included in the latticeTool module.

Twiss is already calculated using util.getTwiss

bx,by,ex = latticeTools.interpolatedTwiss(Lattice)

slice the ring into 1000 for the good smoothness

xs = np.linspace(0,globval.C,1000)

plt.plot(xs,bx(xs))

plt.plot(xs,by(xs))

Eta is too small in the same scale

plt.plot(xs,10*ex(xs))

plt.show()

Add a new element into the existing lattice.

Create the pinger element and insert it to the given position

of the lattice.

define a pinger family with length of 30 cm

ping_family =\

Family.mpole("PINGER",len(famobjs),Family.PING,0.3)

give a name for a new pinger element

ping_family.name = ’HPNG1C22A’

place the pinger at 176.718m

ping_element = \

Element.createOne(576.8718,**(props(ping_family)))

Family.append(ping_family)

sort the lattice so that the new element is properly

positioned

Lattice= \

sorted(Lattice, key=lambda element: element.S)

Find an element and modify its propety.

Find a quadrupole with the given name and increase the

focusing strength.

find a quadrupole with the name

quad=[ele for ele in Lattice if ele.Name=="QH1G2C28A"]

increase the quadrupole strength by 10−4

Lattice[quad[0]].setDBpar(2,1.e-4)

Track a particle and record the beam positions at BPMs.

When a particle is tracked, all the 6d coordinate values

are saved at the beginning and end of each element with the

name of BeamPos.

find the BPM positions as indices in the lattice

Proceedings of IPAC2016, Busan, Korea THPOY021

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-147-2

4135 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

mons = latticeTools.getBPMindex(Lattice)

initialize the buffers

allx = numpy.empty((NTURN, len(mons)),’d’)

ally = numpy.empty((NTURN, len(mons)),’d’)

initialize the particle coordinate with x0=y0=1mm

x = numpy.array([0.001,0,0.001,0,0,0],’d’)

for n in range(NTURN):

util.vecOnePass(Globval, Lattice, x)

allx[n,:]=np.array(\

[Lattice[m].BeamPos[0,0] for m in mons])

ally[n,:]=np.array(\

[Lattice[m].BeamPos[0,2] for m in mons])

Calculate the transfer matrix by tracking the particle.

The transfer matrix can be obtained by tracking using the

linear automatic differentiation [11].

initialize the numpy array for the transfer matrix

mat = numpy.zeros((6,7),’d’); mat[:,1:] =

numpy.eye(6,dtype=’d’)

track the particle with class function mPass

for n in range(i0,i1):

Lattice[n].mPass(Globval, mat)

get transfer matrix from element i0 to element i1-1

transf_mat=mat[:,1:]

Generate the live lattice based on the magnet currents.

As an example of NSLS-II dedicated functionalities, the

live lattice is constructed from the magnet currents.

read the magnet currents from control system or files

and make a Python dictionary named pv_val_ whose keys

are PVs and values are corresponding currents

util.readDict(Lattice,pv_val_Dict)

apply the set-point currents to the quadrupoles

and sextupoles using unit-conversions

util.loadCurrent(Globval,Lattice,source=’SP’,target=’QS’)

SUMMARY

We showed many conveniences and flexibilities of

N2Track as a Python application. Many other unique func-

tionalities other than those introduced are also available and

new convenient functions also can be easily added. With

all these advantages, however, the slow performance is a

serious drawback especially when we need track particles

many turns. Because few efforts were made for the perfor-

mance improvement yet, there is a room to improve it by, for

example, python vectorization. However, slow performance

of Python is very well proved and the only known solutions

are using C-compiled libraries and/or parallel programming.

Because adopting C-compiled libraries means giving up

pure python and many flexibilities together, we are looking

for an alternative solution and found the relatively new lan-

guage called julia [12] has all the conveniences and desired

performance. We also found that running julia in parallel

environment is very native. Therefore, after some bench-

mark tests, if the performance of julia is satisfied, moving

the julia will be seriously considered.

REFERENCES

[1] Python, https://www.python.org/

[2] L. Yang, J. Choi, Y. Hidaka, G. Shen and G. Wang, “De-

velopment Progress of NSLS-II Accelerator Physics High

Level Applications,” Proceedings of IPAC2012, New Orleans,

Louisiana, USA, p. 4005, 2012

[3] J. Bengtsson, “TRACY-2 User’s Manual,” SLS Internal Docu-

ment, 1997; M. Böge, “Update on TRACY-2 Documentation,”

SLS Internal Note, SLS-TME-TA-1999-0002, 1999

[4] G. Shen, L. Yang, Y. Li, “Virtual Accelerator at NSLS-II

Project,” Proceedings of ICALEPCS2013, San Francisco,

CA, USA, p. 890, 2013

[5] SIP, https://pypi.python.org/pypi/SIP

[6] L. Yang, J. Choi, Y. Hidaka, Y. Li, G. Shen, and G. Wang,

“The Design of NSLS-II High-level Physics and Applications,”

Proceedings of ICALEPCS2013, San Francisco, CA, USA,

p. 890, 2013

[7] M. Borland, “elegant: A Flexible SDDS-compliant Code for

Accelerator Simulation,” APS LS-287, September 2000

[8] C. Wang, V. Sajaev, and C. Y. Yao “Phase advance and β

function measurements using model-independent analysis,”

Phys. Rev. ST Accel. Beams, vol. 6, p. 104001, Oct. 2003.

[9] NumPy, http://www.numpy.org/

[10] SciPy, https://www.scipy.org/

[11] M. Berz “Differential Algebraic Description of Beam Dynam-

ics to Very High Orders,” Part. Accel., vol. 24, pp. 109-24,

1989

[12] julia, http://julialang.org/

THPOY021 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

4136C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

06 Beam Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

