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Abstract
The free-electron laser in Hamburg (FLASH) [1] is a user

facility delivering soft X-ray radiation in the range from 4.2

nm to 50 nm in up to 8000 pulses per second. Ten bunch

trains per second with up to 800 electron bunches separated

by 1 μs are accelerated to energies from about 380 MeV to
almost 1250 MeV. Starting from 2014, a second beam line

for FEL (free electron laser) operation, FLASH2, has been

commissioned. The first beam line, now called FLASH1,

and FLASH2 are both driven by the same injector and linac.

Downstream of the last accelerating module, the sub-train for

FLASH2 is vertically kicked and ejected into the deflecting

channel of a horizontal Lambertson septum with a deflection

angle of 6.5◦ [2].
Naturally, in the region of the beam switch the horizontal

separation of the two beam lines is rather small. In fact it

has been observed that the first steerer magnets (correction

dipoles) in each beam line perturb the orbit in the other

beam line. This crosstalk can significantly degrade the FEL

performance.

We have developed a method for locally compensating the

orbit crosstalk using combinations of orbit bumps [3]. The

perturbation due to a steerer in one beam line is corrected

using additional steerers in the other beam line. This concept

has already been tested at FLASH in 2015 and thereby has

proven to compensate the crosstalk sufficiently well to ensure

unperturbed FEL operation.

VIRTUAL STEERERS
In order to model the steerer crosstalk quantitatively we

introduce the notion of a virtual steerer. Given a real steerer
acting as a dipole magnet on, say, beam line I with kick

strength κI at position sI (along the reference trajectory in
beam line I), its transverse stray field will kick the beam orbit

in the other beam line, say II, like there was an additional,

virtual steerer located at sII in beam line II, the point closest
to the real steerer in beam line I, with horizontal and vertical

kick strengths κIIx ∝ κIIy . The magnetic field outside the
iron yoke is not designed to be purely horizontal or vertical,

therefore virtual steerers will in general deflect the beam

horizontally and vertically at the same time andwith different

(proportional) kick strength.

To quantify the coupling of the virtual to the real steerer,

the crosstalk ratio T is introduced

Tx,y =
κvirtualx,y

κreal
, (1)
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where κreal is the kick strength of the real steerer in its de-
flecting plane and κvirtualx,y are the kick strengths of the corre-

sponding virtual steerer in x or y.

Measurement of the Crosstalk Ratio
A convenient way to measure the strength of a virtual

steerer and its crosstalk ratio uses orbit response matrices

(ORMs). Given N steerers {Ki }1≤i≤N with kicks {κi }1≤i≤N ,
M BPMs {Bj }1≤ j≤M measuring beam positions {x j }1≤ j≤M ,
and the linear transfer mapMj←i , the evolution of trajecto-

ries between Ki and Bj reads

(
x
x ′

)
j

=Mj←i

(
x
x ′

)
i

. (2)

The difference orbit Δx j at BPM Bj after changing the kick

strength of steerer Ki by Δκi is given by the the ORM O

Δx j = (O) j,i Δκi :=
(
Mj←i

)
1,2
Δκi . (3)

Therefore it is possible to calculate the kick strength (and

thus the crosstalk ratio T) of a virtual steerer, if the transfer
matrix element between the virtual steerer and the BPM is

computed using the magnetic lattice, the beam rigidity, the

magnet excitation curves and the magnet currents.

In the FLASH switchyard, the steerer that is the closest

to the other beam line, which has an iron length of 10 cm, a

gap height of 4 cm and a distance from the outer edge of its

iron yoke to the center of the neighboring beam line of only

5 cm, has measured crosstalk ratios of Tx = 0.2751±0.0043
and Ty = 0.166 ± 0.030.

BUMP-BASED COMPENSATION OF THE
STEERER CROSSTALK

Local orbit bumps are the designated method to shift the

transverse position of a beam locally without affecting the

orbit in the rest of the machine [4]. The basic building block

of local orbit manipulations that is general enough to be

applied to arbitrary lattices consists of three steerers in a

so-called three-bump.

Local Orbit Three-Bumps
A local orbit three-bump consists of three steerers. The 1st

steerer produces a betatron oscillation with given amplitude

and initial phase that is finally compensated at the position

of the 3rd steerer by linear combination of the betatron oscil-

lations due to the 2nd and 3rd steerers. The 2nd and 3rd steerer

can compensate an incoming betatron oscillation with any

phase given their phases difference is not an integer multiple

of 180◦. Since the betatron oscillations are always linearly
superposed, the following three statements are always true:
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With steerers K1, K3, K3 at betatron phases ϕ1 < ϕ2 < ϕ3
and with kicks strengths κ1, κ2, κ3,

1. if ϕ3 − ϕ2 � kπ, k ∈ N, then real constants C2,123
and C3,123 exist so that κ2 = C2,123κ1 & κ3 = C3,123κ1
define a closed bump ∀κ1;

2. if ϕ3 − ϕ1 � kπ, k ∈ N, then real constants C1,123
and C3,123 exist so that κ1 = C1,123κ2 & κ3 = C3,123κ2
define a closed bump ∀κ2;

3. if ϕ2 − ϕ1 � kπ, k ∈ N, then real constants C1,123
and C2,123 exist so that κ1 = C1,123κ3 & κ2 = C2,123κ3
define a closed bump ∀κ3.

Here and in the following we use the following convention

for the bump coefficients: The bump coefficient is denoted

by C. The first lower index indicates the dependent steerer it
controls. The second lower index-triple denotes the steerers

involved in the bump. Herein the independent steerer which

controls the other two is denoted in bold face. For an explicit

derivation of the bump coefficients see e.g. [4]. Whenever

(later) bump coefficients are defined for a special beam line

and in a special plane (x or y), it is indicated by upper indices.

Long Three-Bump

I
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Figure 1: The method of the long three-bump. The black

box indicates the absence of (noticeable) crosstalk due to

either shielding or sufficient separation. Only one phase

plane is shown. The other is trivially included by adding two

non-crosstalking real steerers for the other plane in beam

line II.

The long three-bump is the simplest scheme to correct

the steerer crosstalk. The orbit perturbation produced by the

first virtual steering coil is corrected using two real steerers

far enough downstream, so that their influence on the other

beam line is negligible. This is visualized in Fig. 1 and the

closed bump condition for local compensation in one plane

in terms of κI
1
reads

κII2 = CII2,123 T II1 κ
I
1

κII3 = CII3,123 T II1 κ
I
1 .

(4)

We note that the long three-bump compensation scheme only

contains closed bump conditions parametrized in terms of

the first steerer.

Assuming the absence of phase degeneracy we only need

one three-bump per plane in the second beam line to correct

the virtual kicks due to all crosstalking steerers from the

other beam line. Unfortunately, since the bump is closed

potentially far downstream of the initial distortion, the com-

pensation is possibly not “local” enough.

Interleaved Short Three-Bumps
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Figure 2: The method of interleaved short three-bumps.

Each virtual perturbation is closed as local as possible

at the expense of back-reacting on the other beam line and

causing the need for crosstalk compensation in that beam

line. This method is based on a chain of successively cor-

recting perturbations in one beam line while introducing

new, weaker perturbations downstream in the other. The

chain terminates when the new perturbations become neg-

ligible due to shielding, separation and/or the multiplying

up the crosstalk coefficients to higher order. Only one such

chain (starting with the most upstream crosstalking steerer)

is needed per plane, since any perturbation from the crosstalk

of a steerer downstream the first is is corrected by the sub-

chain starting from there. Figure 2 shows this case.

To illuminate the decaying magnitude of the successive

corrections we introduce the smallness parameter 0 < ε 
 1
via

Ti = T̃i · ε with T̃i = O(1) . (5)

Using the example from Fig. 2, assuming the perturbation

starts with κI
1
, and propagating the perturbations down the

chain we find for the closed bump conditions:

κII2 = T1 CII2,124 κ
I
1 = O(ε )

κII4 = T1 CII3,124 κ
I
1 + T3 CII2,346 κ

I
3 = O(ε )

κI3 = T2 CI2,235 κ
II
2 = O(ε2)

κI5 = T2 CI3,235 κ
II
2 + T4 CII2,457 κ

II
4 = O(ε2)

κI7 = T4 CII3,457 κ
II
4 = O(ε2)

κII6 = T3 CII3,346 κ
I
3 = O(ε3) .

(6)

Using the interleaved short three-bumps the initial per-

turbation is corrected locally at the expense of introducing

weaker (higher order ε) perturbations downstream, which
have to be corrected successively. The orbit distortion pro-

duced by the downstream steerers is always less, since they

are in general further away from the other beam line (T̃j � T̃i
for i < j) and since they are of higher order in ε . Therefore
the orbit perturbation is always reduced until it becomes

negligible. We note that the interleaved short three-bump

compensation scheme only contains closed bump conditions

parametrized in terms of the first steerer.
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Recursively Coupled Short Three-Bumps
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Figure 3: Visualization of the recursively coupled short

three-bumps.

The recursively coupled short three-bumps are the most

elegant solution to correct the steerer crosstalk. Only the

crosstalking steerers, but at least two real steerers per beam

line and plane are needed and the correction takes place as

local as possible. A schematic can be seen in Fig. 3. The

initial perturbation from the one of the crosstalking steerers

of, say, beam line I is corrected using two real steerers in

beam line II that can be downstream or upstream of the

virtual steerer introduced by the crosstalk. Since these two

steerers will in general produce crosstalk in beam line I, the

perturbation is compensated using two real steerers in beam

line I, closest to the virtual steerers crosstalking from beam

line II. Each of the two real steerers in beam line I can be

up- or downstream of any of the two virtual steerers. In

particular one of them (and that is the case in Fig. 3) can be

the steerer that initially introduced the perturbation on beam

line II. The steerers selected in the last step in beam line

I will again crosstalk to beam line II but, as we have seen

before in the previous subsection, the back-reacting crosstalk

due to compensating crosstalk is one order higher in ε . We
might therefore hope to find a convergent recursion for the

steerer kicks. The recursion for the situation given in Fig. 3

with in total 4 real and 4 virtual steerers can be written in

matrix form:

���
�

ΔκII
2

ΔκII
4

ΔκI
1

ΔκI
3

���
�i

=
����
�

0 0 T1 ·CII1,124 T3 ·CII1,234
0 0 T1 ·CII3,124 T3 ·CII3,234

T2 ·CI1,123 T4 ·CI1,134 0 0

T2 ·CI3,123 T4 ·CI2,134 0 0

����
�

���
�

ΔκII
2

ΔκII
4

ΔκI
1

ΔκI
3

���
�i−1

(7)

or more compactly

Δ�κi = KΔ�κi−1, (8)

with (Δκ)i = (κ)i − (κ)i−1 and κ = any of the κ’s involved.
In passing, we note that the recursively coupled short three-

bump scheme involves bump coefficients of all three types.

Let the starting perturbation be an arbitrary vector �κ0 and
Δ�κ0 := �κ0, then �κn after n iterations is given by

�κn =

n∑
i=0

Δ�κi =

n∑
i=0

Ki �κ0 . (9)

In the limit n → ∞ rediscover the geometric series for ma-
trices. If all eigenvalues λi of K, fulfill |λi | < 1, then [5]

∞∑
i=0

Ki = (1 −K)−1, (10)

We note that K is O(ε ) and that we do not expect the bump
coefficients to blow up unless the phase advances between

steerers are close to degenerate. In fact for the switchyard in

FLASH all λi are real and their moduli are well below 1, in
fact of the order of 0.2 rather.

MEASUREMENTS AT FLASH
To demonstrate the practical feasibility of this concept,

we have measured beam orbits at FLASH with and without

correction for all three schemes and various initial pertur-

bations. Fig. 4 shows as example the horizontal difference

orbits in FLASH1 from the switchyard to the SASE undu-

lator after changing a crosstalking steerer in FLASH2 by

0.6mrad with (blue) and without (red) compensation using

interleaved short three-bumps. Obviously the uncorrected

difference orbit is up to 0.5mm, while the corrected differ-

ence orbit outside the correction section is within 2σ of zero.
Note there were also small drifts due to external sources dur-

ing the measurement. Furthermore, we demonstrated that
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Figure 4: Measurement of the horizontal difference orbits

FLASH1 downstream the switchyard after changing the kick

of a crosstalking FLASH2 steerer with (blue) and without

(red) bump compensation.

the SASE pulsenergy can be preserved in FLASH1 while

steering the beam in the crosstalking region of FLASH2

with bump compensation active.
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