Keyword: data-analysis
Paper Title Other Keywords Page
WEPOR045 PACMAN - the MedAustron Measurement Data Analysis Framework framework, interface, GUI, software 2774
 
  • A. Wastl, A. Garonna, T.K.D. Kulenkampff, S. Nowak
    EBG MedAustron, Wr. Neustadt, Austria
 
  During the commissioning of the synchrotron-based MedAustron accelerator facility, the analysis and interpretation of data of various sources was required. A dedicated framework was developed to analyze the raw data provided by the accelerator control system (ACS). A tested and documented software core with a simple and standardized interface allows also non-programming professionals to easily base their applications on this framework which is essential to efficiently make progress in the dynamic environment of commissioning. This document presents the structure of the framework, the interface between the software core and higher level applications and gives an example using all framework levels.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR051 Second Generation LHC Analysis Framework: Workload-based and User-oriented Solution experiment, simulation, framework, factory 2784
 
  • S. Boychenko, C. Aguilera-Padilla, M.A. Galilée, J.C. Garnier, A.A. Gorzawski, K.H. Krol, J. Makai, M. Osinski, M.C. Poeschl, T.M. Ribeiro, A. Stanisz, M. Zerlauth
    CERN, Geneva, Switzerland
  • M.Z. Rela
    University of Coimbra, Coimbra, Portugal
 
  Consolidation and upgrades of accelerator equipment during the first long LHC shutdown period enabled particle collisions at energy levels almost twice higher compared to the first operational phase. Consequently, the software infrastructure providing vital information for machine operation and its optimisation needs to be updated to keep up with the challenges imposed by the increasing amount of collected data and the complexity of analysis. Current tools, designed more than a decade ago, have proven their reliability by significantly outperforming initially provisioned workloads, but are unable to scale efficiently to satisfy the growing needs of operators and hardware experts. In this paper we present our progress towards the development of a new workload-driven solution for LHC transient data analysis, based on identified user requirements. An initial setup and study of modern data storage and processing engines appropriate for the accelerator data analysis was conducted. First simulations of the proposed novel partitioning and replication approach, targeting a highly efficient service for heterogeneous analysis requests, were designed and performed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR042 New Quantity Describing the Pulse Shape Dependence of the High Gradient Limit in Single Cell Standing-Wave Accelerating Structures operation, vacuum, radiation, experiment 3878
 
  • J. Shi, H.B. Chen, X.W. Wu
    TUB, Beijing, People's Republic of China
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • A. Grudiev, W. Wuensch
    CERN, Geneva, Switzerland
  • Y. Higashi
    KEK, Ibaraki, Japan
  • B. Spataro
    INFN/LNF, Frascati (Roma), Italy
 
  A new quantity has been developed to study the relationship among the breakdown rate, the pulse width and the gradient. Difference pulse shapes can be treated by introducing a Green's function. This paper describes the quantity and the results while it is applied to the data of many high-power test runs of different single-cell standing wave accelerating structures. A remarkably similar relationship between the new quantity and breakdown rate is observed from all of the test results.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)