Author: Zhai, J.Y.
Paper Title Page
WEPMB030 Design Study of a Compact Deflecting Cavity at IHEP 2188
 
  • J.P. Dai, B. Ni, J.Y. Zhai, J.R. Zhang
    IHEP, Beijing, People's Republic of China
 
  For the XFEL project proposed by IHEP, a sophisticated beam spreader is required to separate a single beam into multiple beams. One of the deflecting cavities used in the spreader has been investigated and optimized. It is a 325 MHz, compact RF-dipole superconducting cavity, with the transverse R/Q of 2900Ω, geometrical factor G of 88.5 Ω, and the Helium pressure sensitivity df/dp of 3.4 Hz/mbar. At the nominal deflecting voltage of 7MV, the peak electric field Epeak is 41 MV/m and peak magnetic field Bpeak is 48 mT. This paper will present the detailed RF and mechanical designs.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB032 Fabrication and Testing Status of IHEP03 2194
 
  • T.X. Zhao, J. Gao, S. Jin, Z.Q. Li, Y.L. Liu, Z.C. Liu, Y. Wang, J.Y. Zhai, H.J. Zheng
    IHEP, Beijing, People's Republic of China
  • M. Asano, E. Kako
    KEK, Ibaraki, Japan
  • H. Yu, H. Yuan
    BIAM, Beijing, People's Republic of China
 
  After the successful development of the IHEP01 and IHEP02 1.3GHz 9cell superconducting cavity, we developed a 1.3GHz Tesla-Like 9cell superconducting cavities in collaboration with KEK. The cavity was made by niobium material produced in OTIC, Ningxia, China. After completeing welding, leakage check, BCP, HPR, we sent the cavity to KEK and used the standard procedures of ILC cavity for processing. These include electron polishing, vacuum furnace outgassing, tuning for field flatness and frequency, light EP, baking and vertical test. We target to have a high Q0 cavity for this experiment. In this paper, we will report the experimental status of the IHEP03 cavity.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR010 CEPC Parameter Choice and Partial Double Ring Design 3788
 
  • D. Wang, S. Bai, T.J. Bian, X. Cui, Z. Duan, J. Gao, H. Geng, Y.Y. Guo, Q. Qin, N. Wang, Y. Wang, M. Xiao, J.Y. Zhai, C. Zhang, Y. Zhang
    IHEP, Beijing, People's Republic of China
  • W. Chou
    Fermilab, Batavia, Illinois, USA
  • F. Su
    Institute of High Energy Physics (IHEP), People's Republic of China
 
  Funding: Work supported by the National Foundation of Natural Sciences (11505198 and 11575218)
In order to avoid the pretzel orbit, CEPC is proposed to use partial double ring scheme in CDR. Based on crab waist scheme, we hope to either increase the luminosity with same beam power as Pre-CDR, or reduce the beam power while keeping the same luminosity in Pre-CDR. FFS with crab sextupoles has been developed and the arc lattice was redesigned to acheive the lower emittance for crab waist scheme.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)