Author: Zha, H.
Paper Title Page
THPMW022 The RF Design of a Compact, High Power Pulse Compressor with a Flat Output Pulse 3591
SUPSS105   use link to see paper's listing under its alternate paper code  
 
  • P. Wang, H.B. Chen, J. Shi
    TUB, Beijing, People's Republic of China
  • I. Syratchev, W. Wuensch, H. Zha
    CERN, Geneva, Switzerland
 
  An X-band, high-power pulse compressor, which can produce a flat pulse and a power gain of 4.3, has been designed. The device is compact, with the dimensions of within 1m, and is designed for CLIC first energy stage based on klystrons. We also discuss about a two stage pulse compressor with power gain of 9.18, which may be a candidate of the X-FEL using CLIC X-band linacs and klystrons with low peak power.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR043 High Power Test of X-band Single Cell HOM-free Choke-mode Damped Accelerating Structure made by Tsinghua University 3881
 
  • X.W. Wu, H.B. Chen, J. Shi
    TUB, Beijing, People's Republic of China
  • T. Abe, T. Higo
    KEK, Ibaraki, Japan
  • W. Wuensch, H. Zha
    CERN, Geneva, Switzerland
 
  As an alternative design for CLIC main accelerating structures, X-band choke-mode damped structures had been studied for several years. However, the performance of choke-mode cavity under high power is still in lack of research. Two standing wave single cell choke-mode damped accelerating structures with different choke dimensions which are working at 11.424 GHz were designed, manufactured and bench tested by accelerator group in Tsinghua University. High power test was carried out on it to study the breakdown phenomenon in high gradient. A single cell structure without choke which almost has the same inner dimension as choke-mode cavity will also be tested to make a comparison and study how the choke affects high-gradient properties.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)