Author: Yakovlev, V.P.
Paper Title Page
WEPMR012 Misalignment Studies of LCLS-II SC Linac 2283
 
  • A. Saini, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
 
  The Linac Coherent Light Source (LCLS) is an x-ray free electron laser facility. The proposed upgrade of the LCLS facility is based on construction of a 4 GeV superconducting (SC) linear accelerator (linac). An optimal reliable performance of the linac is largely determined by beam sensitivity to various component alignment errors. In this paper we evaluate misalignment tolerances of LCLSII SC linac using a more realistic alignment model that includes correlated misalignment of elements.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR014 RF Design of a High Average Beam-Power SRF Electron Source 2289
 
  • N. Sipahi, S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • I.V. Gonin, R.D. Kephart, T.N. Khabiboulline, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  There is a significant interest in developing high-average power electron sources, particularly in the area of electron sources integrated with Superconducting Radio Frequency (SRF) systems. For these systems, the electron gun and cathode parts are critical components for stable intensity and high-average powers. In this initial design study, we will present the design of a 9-cell accelerator cavity having a frequency of 1.3 GHz and the corresponding field optimization studies.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR003 Failure Modes and Beam Losses Studies in ILC Bunch Compressors and Main Linac 3388
 
  • A. Saini, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Proposed International linear collider (ILC) involves high average beam power. Dealing with high average beam power and smaller beam sizes result in stringent tolerances on beam losses and therefore, extensive studies are required to investigate every possible scenarios that lead to beam losses. In this paper we discuss beam losses due to failure of critical elements in beamline for ILC bunch compressors and main linac.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)