Author: Xu, H.S.
Paper Title Page
TUPOR011 Study of Microwave Instability for SLS-2 1678
 
  • H.S. Xu, P. Craievich, M.M. Dehler, L. Stingelin
    PSI, Villigen PSI, Switzerland
 
  An ultra-low emittance electron storage ring is under development for the Upgrade of Swiss Light Source (SLS-2). An antechamber scheme consisting of round beam channel with 10 mm inner radius is considered to accommodate the required strong quadrupole and sextupole magnets, achieve the ultra-high vacuum, and absorb the undesired synchrotron radiation. However, the small size of vacuum chamber increases the susceptibility of the beam to the impedance induced collective instabilities. We will present the preliminary study of the microwave instability for SLS-2 storage ring considering the longitudinal Resistive-Wall (RW) impedance due to three different options for the beam chamber. The microwave instability thresholds are calculated under the conditions of two possible RF frequencies (100 MHz and 500 MHz) and three different materials (aluminum, copper, and stainless steel). The influences of third-harmonic cavities are also studied.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW038 Proposed Upgrade of the SLS Storage Ring 2922
 
  • A. Streun, M. Aiba, M. Böge, C. Calzolaio, M.P. Ehrlichman, A. Müller, Á. Saá Hernández, H.S. Xu
    PSI, Villigen PSI, Switzerland
 
  A new storage ring is planned for the upgrade of the Swiss Light Source (SLS). It will replace the 12 triple bend achromats by twelve 7-bend achromats, which are based on low aperture longitudinal gradient bends (LGBs) and anti-bends (ABs), thus reducing the emittance from 5.0 nm to about 150 pm at 2.4 GeV while maintaining the source points of the undulator based beam lines. Sextupole and octupole strengths are determined using a multi-objective genetic algorithm (MOGA) and result in sufficient dynamic aperture for off-axis injection and several hours of Touschek lifetime. Superconducting LGBs of 5-6 T peak field will extend the photon range of the SLS up to 80-100 keV. The vacuum system will be based on a 20 mm inner diameter copper beam pipe with ante-chamber, and discrete getter pumps. It is planned to reuse the existing injector complex and the dynamically adjustable girder system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)