Author: Wu, J.
Paper Title Page
MOPOW020 Power Improvement of Free-Electron Laser Using Transverse-Gradient Undulator with External Focusing 760
 
  • G. Zhou, Y. Jiao, G. Xu
    IHEP, Beijing, People's Republic of China
  • J. Wu
    SLAC, Menlo Park, California, USA
  • T. Zhang
    SINAP, Shanghai, People's Republic of China
 
  Funding: Supported by National Natural Science Foundation of China (11475202, 11405187) and Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2015009)
Resent study [Z. Huang et al., Phys. Rev. Lett. 109, 204801 (2012)] shows that the transverse-gradient undu-lator (TGU) together with electron beams with constant dispersion can reduce the sensitivity to energy spread for FEL. In this study, we numerically study FEL using TGU with external focusing. In spite of the dispersion varia-tion, through parameter optimization, FEL using TGU with TGU achieves similar radiation to that without ex-ternal focusing. To achieve a high energy exaction effi-ciency, the initial dispersion should be set with a shift from that corresponding to the resonant condition, and a variation of the transverse gradient in different undulator section is preferred. Other approaches, such as tapering and detuning frequency control, are also discussed to further improve the radiation power and are demonstrated with global parametric optimizations base on simulation.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW040 High Efficiency, High Brightness X-ray Free Electron Lasers via Fresh Bunch Self-Seeding 805
 
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, California, USA
  • M.W. Guetg, A.A. Lutman, A. Marinelli, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
 
  High efficiency, terawatt peak power X-ray Free Electron Lasers are a promising tool for enabling single molecule imaging and nonlinear science using X-rays. Increasing the efficiency of XFELs while achieving good longitudinal coherence can be achieved via self-seeding and undulator tapering. The efficiency of self-seeded XFELs is limited by two factors: the ratio of seed power to beam energy spread and the ratio of seed power to shot noise power. We present a method to overcome these limitations by producing a strong X-ray seed and amplifying it with a small energy spread beam. This is achieved by selectively suppressing lasing for part of the bunch in the SASE section. In this manner we can saturate with the seeding electrons and amplify the strong seed with 'fresh' electrons downstream of the monochromator. Simulations of this scenario are presented for two systems, an optimal superconducting undulator design and the LCLS. In the case of the LCLS we examine how betatron oscillations leading to selective suppression are induced by using the transverse wakefield of a parallel plate dechirper. We also discuss extending the selective suppression scheme to chirped electron bunches.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)