Author: Wu, C.-F.
Paper Title Page
MOPOW054 The 4th Harmonic Cavity for Hefei Light Source-II 837
 
  • C.-F. Wu, S. Dong, G. Huang, D. Jia, K. Jin, C. Li, J.Y. Li, W. Li, J.G. Wang, L. Wang, W. Xu, K. Xuan
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • R.A. Bosch
    UW-Madison/SRC, Madison, Wisconsin, USA
  • G.Y. Kurkin, E. Rotov
    BINP SB RAS, Novosibirsk, Russia
  • G. Ya
    Budker Institute of Nuclear Physics, Novosibirsk, Russia
 
  The 4th harmonic cavity has been firstly used in the storage ring for HLS-II. The paper presents the physics design, developing process and the experimental results for commision. The measurment results show that rf parameters are reasonable. The 4th harmonic cavity efficiently lengthen the bunch and increase the beam life-time. Specially, the beam instablity has been supressed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR058 Preliminary Study for the HLS Variable Pulse Length Storage Ring by Two Harmonic Cavities 2802
SUPSS011   use link to see paper's listing under its alternate paper code  
 
  • T. Zhang, W. Li, L. Shang, L. Wang, C.-F. Wu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The 4th harmonic cavity is successfully used in HLS II to increase the beam lifetime and suppress the beam instability now. At the future, a scheme of the two higher harmonic cavities may be applied in Hefei light source for a variable electron pulse length storage ring (HLS VSR). With optimal RF system parameters, 45 ps long bunches and 6 ps short bunches may be stored simultaneously in the HLS storage ring. The ratio of the bunch number for 45 ps to the one for 6 ps is 1:2. Particle tracking calculations are performed to simulate the longitudinal phase space of the new system and to track the process of shortening bunches with Elegant Software. Moreover, a tracking simulation code for RF systems is developed in MALAB to study transient beam loading which affects bunch length, phase stability, and longitudinal muti-bunch oscillation for different fill patterns. In the end, the preliminary design of the two harmonic cavities for longitudinal bunch focusing is given.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)