Author: Wang, M.-H.
Paper Title Page
WEPMW012 Injection Optics for the JLEIC Ion Collider Ring 2445
 
  • V.S. Morozov, Y.S. Derbenev, F. Lin, F.C. Pilat, G.H. Wei, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y. Nosochkov, M.K. Sullivan, M.-H. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: * Work supported by the U.S. DOE Contract DE-AC02-76SF00515. ** Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required to allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR053 Influence of Magnet Multipole Field Components on Beam Dynamics in the JLEIC Ion Collider Ring 3525
 
  • G.H. Wei, F. Lin, V.S. Morozov, F.C. Pilat, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Nosochkov, M.-H. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported also by the U.S. DOE Contract DE-AC02-76SF00515.
To get a luminosity level of a few 1033 cm-2ses−1 at all design points of the Jefferson Lab Electron Ion Collider (JLEIC) project, small β* values in both horizontal and vertical planes are necessary at the Interaction Point (IP) in the ion collider ring. This also means large β in the final focus area, chromaticity correction sections, etc. which sets a constraint on the field quality of magnets in large beta areas, in order to ensure a large enough dynamic aperture (DA). In this context, limiting multipole field components of magnets are surveyed to find a possible compromise between the requirements and what can be realistically achieved by a magnet manufacturer. This paper describes that work. Moreover, non-linear field dedicated correctors are also studied to provide semi-local corrections of specific multipole field components.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR054 Error Correction for the JLEIC Ion Collider Ring 3528
 
  • G.H. Wei, F. Lin, V.S. Morozov, F.C. Pilat, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Nosochkov, M.-H. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported also by the U.S. DOE Contract DE-AC02-76SF00515.
The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, and chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)