Author: Versteegen, R.
Paper Title Page
MOPMW001 A New Buncher for the ESRF Linac Injector 389
 
  • A.S. Setty, A.S. Chauchat, D. Jousse
    Thales Communications & Security (TCS), Gennevilliers Cedex, France
  • H. Delamare, J. Jacob, B. Ogier, T.P. Perron, E. Rabeuf, C. Richard, V. Serrière, R. Versteegen
    ESRF, Grenoble, France
 
  The electron linac was designed to be able to deliver more than 2.5 A in less than 2 ns at 200 MeV within an energy spread of 1% for positrons production at ESRF *. The 200 MeV electron linac was commissioned in 1991. A new gun, a cleaner, a pre-buncher cavity and 4 shielded lenses were tested and installed on the injector in 2008 **. Then, a new Buncher for the ESRF electron linac injector was manufactured and commissioned in 2015. Meanwhile, some new settings were performed to reduce the energy spread for both cases: the long pulse mode and the short pulse mode. The simulations and measurements will be presented.
* D. Tronc et Al. "Electron injector for light source", Proc. EPAC88, Italy, Rome, June 1988.
** T. Perron et Al. "New preinjector for the ESRF booster", Proc. EPAC08, Italy, Genoa, June 2008.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOR001 Lifetime Improvements with a Harmonic RF System for the ESRF EBS 1644
 
  • N. Carmignani, L. Farvacque, J. Jacob, S.M. Liuzzo, B. Nash, T.P. Perron, P. Raimondi, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  A third-harmonic RF system to increase the Touschek lifetime is under study for the European Synchrotron Radiation Facility (ESRF) Extremely Brilliant Source (EBS) storage ring, in particular for modes with high current per bunch. Multi-particle simulations have been done to study the bunch lengthening and shape in presence of inductive impedance and a third-harmonic RF system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW005 Updates on Lattice Modeling and Tuning for the ESRF-EBS Lattice. 2818
 
  • S.M. Liuzzo, N. Carmignani, J. Chavanne, L. Farvacque, G. Le Bec, B. Nash, P. Raimondi, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  The ESRF-EBS lattice model is updated to include the effect of magnetic lengths in dipoles, quadrupoles, sextupoles and combined function magnets. The effect of this modification and the updates to the injection cell are considered with particular focus on injection efficiency and Touschek lifetime. The solutions to introduce new sources of radiation suitable for the existing bending magnet radiation beamlines are also presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR015 RCDS Optimizations for the ESRF Storage Ring 3420
 
  • S.M. Liuzzo, N. Carmignani, L. Farvacque, B. Nash, T.P. Perron, P. Raimondi, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  The Robust Conjugate Direction Search (RCDS)* optimizer is applied for online optimizations of the ESRF accelerators. This paper presents the successful application of the algorithm in reducing vertical emittance, improving injection efficiency and increasing lifetime. A new set of sextupole settings to increase chromaticity has been obtained with lifetimes comparable to the existing one. This allows to run with double current in a single bunch, and unifies the optics for few bunch (except 4x10 bunches) and multi-bunch modes.
* X. Huang, J. Corbett, J. Safranek, J. Wu, "An algorithm for online optimization of accelerators", Nucl. Instr. Methods, A 726 (2013) 77-83.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)