Author: Venturini, M.
Paper Title Page
TUPOR018 Design Optimization of Compensation Chicanes in the LCLS-II Transport Lines 1695
 
  • J. Qiang, C.E. Mitchell, M. Venturini
    LBNL, Berkeley, California, USA
  • Y. Ding, P. Emma, Z. Huang, G. Marcus, Y. Nosochkov, T.O. Raubenheimer, L. Wang, M. Woodley
    SLAC, Menlo Park, California, USA
 
  LCLS-II is a 4th-generation high-repetition rate Free Electron Laser (FEL) based x-ray light source to be built at the SLAC National Accelerator Laboratory. To mitigate the microbunching instability, the transport lines from the exit of the Linac to the undulators will include a number of weak compensation chicanes with the purpose of cancelling the momentum compaction generated by the main bend magnets of the transport lines. In this paper, we will report on our design optimization study of these compensation chicanes in the presence of both longitudinal and transverse space-charge effects.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOR019 RF Injector Beam Dynamics Optimization and Injected Beam Energy Constraints for LCLS-II 1699
 
  • C.E. Mitchell, H.J. Qian, J. Qiang, F. Sannibale, M. Venturini
    LBNL, Berkeley, California, USA
  • P. Emma, T.O. Raubenheimer, J.F. Schmerge, F. Zhou
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231.
LCLS-II is a proposed high-repetition rate (>1 MHz) Free Electron Laser (FEL) X-ray light source, based on a CW, superconducting linac, to be built at SLAC National Accelerator Laboratory. The injector technology is based on a high-repetition rate RF photoinjector gun developed as part of the Advanced Photoinjector Experiment (APEX) at Lawrence Berkeley National Laboratory. Exploration of the injector design settings is performed using a multiobjective genetic optimizer to optimize the beam quality at the injector exit (~100 MeV). In this paper, we describe the current status of LCLS-II injector design optimization, with a focus on the sensitivity of the optimized solutions to the beam energy at the injector exit, which is constrained by the requirements of the downstream laser heater system.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW049 Physics Design Progress towards a Diffraction Limited Upgrade of the ALS 2956
 
  • C. Steier, J.M. Byrd, S. De Santis, H. Nishimura, D. Robin, F. Sannibale, C. Sun, M. Venturini, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.
Improvements in brightness and coherent flux of more than two orders of magnitude are possible using multi bend achromat lattice designs. These improvements can be implemented as upgrades of existing facilities, like the proposed upgrade of the Advanced Light Source. We will describe the progress in the physics design of this upgrade, including lattice evolution, error tolerance studies, simulations of collective effects, and intra beam scattering.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW050 Optimization of the ALS-U Storage Ring Lattice 2959
 
  • C. Sun, H. Nishimura, D. Robin, F. Sannibale, C. Steier, M. Venturini, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory is proposing the upgrade of its synchrotron light source to reach soft x-ray diffraction limits within the present ALS footprint. The storage ring lattice design and optimization of this light source is one of the challenging aspects for this proposed upgrade. The candidate upgrade lattice needs not only to fulfill the physics design requirements such as brightness, injection efficiency and beam lifetime, but also to meet engineering constraints such as space limitations, maximum magnet strength as well as beamline port locations. In this paper, we will present the approach that we applied to design and optimize a multi-bend achromat based storage ring lattice for the proposed ALS upgrade.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW051 R+D Progress Towards a Diffraction Limited Upgrade of the ALS 2962
 
  • C. Steier, A. Anders, J.M. Byrd, K. Chow, S. De Santis, R.M. Duarte, J.-Y. Jung, T.H. Luo, H. Nishimura, T. Oliver, J.R. Osborn, H.A. Padmore, G.C. Pappas, D. Robin, F. Sannibale, D. Schlueter, C. Sun, C.A. Swenson, M. Venturini, W.L. Waldron, E.J. Wallén, W. Wan, Y. Yang
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.
Improvements in brightness and coherent flux of about two orders of magnitude over operational storage ring based light sources are possible using multi bend achromat lattice designs. These improvements can be implemented as upgrades of existing facilities, like the proposed upgrade of the Advanced Light Source, making use of the existing infrastructure, thereby reducing cost and time needed to reach full scientific productivity on a large number of beamlines. An R&D program was started at LBNL to further develop the technologies necessary for diffraction-limited storage rings. It involves many areas, and focuses on the specific needs of soft x-ray facilities: NEG coating of small chambers, swap-out injection, bunch lengthening, magnets/radiation production, x-ray optics, and beam physics design optimization. Hardware prototypes have been built and concepts and equipment was tested in beam tests on the existing ALS.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)