Author: Velotti, F.M.
Paper Title Page
TUPMR050 Upgrades to the SPS-to-LHC Transfer Line Beam Stoppers for the LHC High-Luminosity Era 1367
 
  • V. Kain, R. Esposito, M.A. Fraser, B. Goddard, M. Meddahi, A. Perillo Marcone, G.E. Steele, F.M. Velotti
    CERN, Geneva, Switzerland
 
  Each of the 3 km long transfer lines between the SPS and the LHC is equipped with two beam stoppers (TEDs), one at the beginning of the line and one close to the LHC injection point, which need to absorb the full transferred beam. The beam stoppers are used for setting up the SPS extractions and transfer lines with beam without having to inject into the LHC. Energy deposition and thermo-mechanical simulations have, however, shown that the TEDs will not be robust enough to safely absorb the high intensity beams foreseen for the high-luminosity LHC era. This paper will summarize the simulation results and limitations for upgrading the beam stoppers. An outline of the hardware upgrade strategy for the TEDs together with modifications to the SPS extraction interlock system to enforce intensity limitations for beam on the beam stoppers will be given.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW029 Feasibility Study of the Fast SPS Ion Injection Kicker System 3607
 
  • A. Ferrero Colomo, P. Burkel, D. Comte, L. Ducimetière, T. Kramer, V. Senaj, L. Sermeus, F.M. Velotti
    CERN, Geneva, Switzerland
 
  As part of the upgrade project for ions the rise time of the injection kicker system into the SPS needs to be improved. The changes being studied include the addition of a fast Pulse Forming Line parallel to the existing Pulse Forming Network for the fast kicker magnets MKP-S. With the PFL an improved magnetic field rise time of 100 ns is targeted. Two different configuration utilizing a 2nd thyratron or two fast diode stacks have been outlined in the past. This paper presents the recent progress on the analogue circuit simulations for both options as well as measurements carried out on a test system. Modelling, optimization and simulation of the entire system with diodes and a second configuration with two thyratron switches are outlined. Measurement results are given and the feasibility of the upgrade is discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR052 A Beam-based Measurement of the LHC Beam Dump Kicker Waveform 3911
 
  • M.A. Fraser, W. Bartmann, C. Bracco, E. Carlier, B. Goddard, V. Kain, N. Magnin, J.A. Uythoven, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The increase of the LHC collision energy to 13 TeV after Long Shutdown 1 has doubled the operational energy range of the LHC beam dump system (LBDS) during Run 2. In preparation for the safe operation of the LHC, the waveform of the LBDS extraction kicker was measured using beam-based measurements for the first time during the machine's re-commissioning period. The measurements provide a reference for a more precise synchronisation of the dump system and abort-gap timing, and provide an independent check of the system's calibration. The precision of the beam-based technique allowed the necessary adjustments to the LBDS trigger delays to ensure the synchronous firing of the LBDS at all beam energies up to 6.5 TeV. In this paper the measurement and simulation campaign is described and the performance of the system reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR054 Analysis of the SPS Long Term Orbit Drifts 3914
 
  • F.M. Velotti, C. Bracco, K. Cornelis, L.N. Drøsdal, M.A. Fraser, B. Goddard, V. Kain, M. Meddahi
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessity to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR055 Characterisation of the SPS Slow-extraction Parameters 3918
 
  • F.M. Velotti, W. Bartmann, T. Bohl, C. Bracco, K. Cornelis, M.A. Fraser, B. Goddard, V. Kain, L.S. Stoel
    CERN, Geneva, Switzerland
 
  The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain but its main users are the fixed-target experiments located in the North Area (NA). The beams, which are among the most intense circulating in the SPS, are extracted to the NA over several thousands of turns by exploiting a third-integer resonant extraction. The unavoidable losses intrinsic to such an extraction makes its optimisation one of the main priorities for operation, to reduce beam induced activation of the machine. The settings of the extraction systems, together with the tune sweep speed and the beam characteristics (momentum spread, emittance, etc.) are the parameters that can be controlled for spill and loss optimisation. In this paper, the contribution of these parameters to the slow-extraction spill quality are investigated through tracking simulations. The simulation model is compared with beam measurements and optimisations suggested.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR048 SPS Injection and Beam Quality for LHC Heavy Ions With 150 ns Kicker Rise Time 1360
 
  • B. Goddard, E. Carlier, L. Ducimetière, G. Kotzian, J.A. Uythoven
    CERN, Geneva, Switzerland
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
 
  As part of the LHC Injectors Upgrade project for LHC heavy ions, the SPS injection kicker system rise time needs reduction below its present 225 ns. One technically challenging option under consideration is the addition of fast Pulse Forming Lines in parallel to the existing Pulse Forming Networks for the 12 kicker magnets MKP-S, targeting a system field rise time of 100 ns. An alternative option is to optimise the system to approach the existing individual magnet field rise time (2-98%) of 150 ns. This would still significantly increase the number of colliding bunches in LHC while minimising the cost and effort of the system upgrade. The observed characteristics of the present system are described, compared to the expected system rise time, together with results of simulations and measurements with 175 and 150 ns injection batch spacing. The expected beam quality at injection into LHC is quantified, with the emittance growth and simulated tail population taking into account expected jitter and synchronisation errors, damper performance and SPS non-linear optics behavior. The outlook for deployment is discussed, with the implications for LHC operation and HL-LHC performance.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW030 Studies of Impedance-related Improvements of the SPS Injection Kicker System 3611
 
  • M.J. Barnes, A. Adraktas, M.S. Beck, G. Bregliozzi, H.A. Day, L. Ducimetière, J.A. Ferreira Somoza, B. Goddard, T. Kramer, C. Pasquino, G. Rumolo, B. Salvant, L. Sermeus, J.A. Uythoven, L. Vega Cid, W.J.M. Weterings, C. Zannini
    CERN, Geneva, Switzerland
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
 
  The injection kicker system for the SPS consists of sixteen magnets housed in a total of four vacuum tanks. The kicker magnets in one tank have recently limited operation of the SPS with high-intensity beam: this is due to both beam induced heating in the ferrite yoke of the kicker magnets and abnormally high pressure in the vacuum tank. Furthermore, operation with the higher intensity beams needed in the future for HL-LHC is expected to exacerbate these problems. Hence studies of the longitudinal beam coupling impedance of the kicker magnets have been carried out to investigate effective methods to shield the ferrite yoke from the circulating beam. The shielding must not compromise the field quality or high voltage behaviour of the kicker magnets and should not significantly reduce the beam aperture: results of these studies, together with measurements, are presented. In addition results of tests to identify the causes of abnormal outgassing are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)