Author: Tzoganis, V.
Paper Title Page
MOPMR046 Characterizing Supersonic Gas Jet-based Beam Profile Monitors 357
 
  • H.D. Zhang, A.S. Alexandrova, A. Jeff, V. Tzoganis, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.S. Alexandrova, A. Jeff, V. Tzoganis, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • A. Jeff
    CERN, Geneva, Switzerland
 
  Funding: Work supported by EU under contracts 215080 and 289191, Helmholtz Association (VH-NG-328) and STFC under the Cockcroft Institute core grant ST/G008248/1.
The next generation of high power, high intensity accelerators requires non-invasive diagnostics, particularly beam profile monitors. Residual gas-based diagnostics such as ionization beam profile or beam induced fluorescence monitors have been used to replace commonly used scintillating screens. At the Cockcroft Institute an alternative technique using a supersonic gas jet, shaped into a 45o curtain screen, was developed. It has already demonstrated its superior performance in terms of resolution and signal-to-noise ratio in comparison with residual gas monitors in experimental studies. The performance of this type of monitor depends on the achievable jet homogeneity and quality. Using a movable vacuum gauge as a scanner, the dynamic characteristics of the jet are studied. In this paper we also give an analysis of the resolution for this monitor in detail from the theory and ion drift simulation.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR048 Emittance Measurements and Operation Optimization for ECR Ion Sources 361
 
  • V. Tzoganis, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • O. Kamigaito, T. Nagatomo, T. Nakagawa, V. Tzoganis
    RIKEN Nishina Center, Wako, Japan
  • V. Tzoganis, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: RIKEN IPA scheme and Cockcroft Institute Core Grant
Electron Cyclotron Resonance (ECR) ion sources supply a broad range of ions for post acceleration in cyclotrons. Here, an effort to improve the beam transfer from RIKEN's 18 GHz ECR ion source to the Low Energy Beam Transfer (LEBT) line and an optimization of the performance of the ion source is presented. Simulation studies have shown that less than 20% of the beam is currently transferred. The first goal is to measure the transverse beam emittance in real time. The emittance monitor designed and fabricated for this purpose utilizes a pepper pot plate followed by a transparent scintillator and a CMOS camera for image capture. The second goal is to find the optimal operating point of the ion source by sweeping parameters such as RF power, vacuum pressure, extraction electrode position and voltage. To this extent, modifications of the ion source took place, as well as a measurement of the magnetic field inside the ion source. In this contribution the results of the emittance and other operating parameters measurements, as well as the design details of the emittance monitor are presented
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)