Author: Temkin, R.J.
Paper Title Page
THPOR044 mm-Wave Standing-Wave Accelerating Structures for High-Gradient Tests 3884
 
  • E.A. Nanni, M. Dal Forno, V.A. Dolgashev, J. Neilson, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • S.C. Schaub
    MIT, Cambridge, Massachusetts, USA
  • R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
 
  We present the design and parameters of single-cell accelerating structures for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures consist of pi-mode standing-wave cavities fed with TM01 circular waveguide mode. The geometry and field shape of these accelerating structures is as close as practical to single-cell standing-wave X-band accelerating structures, more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. The structures will be powered from a pulsed MW gyrotron oscillator. One MW of RF power from the gyrotron may allow us to reach a peak accelerating gradient of 400 MeV/m.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)