Author: Takas, P.
Paper Title Page
WEPMR040 HOM Absorber Study by Photon Diffraction Model 2360
 
  • C. Xu, I. Ben-Zvi, V. Ptitsyn, P. Takas, W. Xu
    BNL, Upton, Long Island, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • B. P. Xiao
    SBU, Stony Brook, New York, USA
 
  Photon diffraction model (PDM) is one of the most promising candidates to study High Order Mode (HOM) power absorption on absorbing materials for high current SRF cavities. Because at very high frequency (>10GHz), the wavelengths of HOMs are much smaller compared with accelerators dimension, the phase of those HOM will be negligible. Meanwhile, Finite Element Method (FEM) cannot lend a high resolution on evaluation the HOM field patterns due to limited meshing capability. This PDM model utilizes Monte Carlo simulation to trace the ray diffusive reflection in a cavity. This method can directly estimate the power absorption on the cavity and absorber wall. This method will help design the HOM damper setup for eRHIC HOM damper. In this report, we evaluate HOM absorption on the cavity wall with different absorber setup and give a possible solution for power damping scheme for high frequency HOMs.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)