Author: Syphers, M.J.
Paper Title Page
MOPOY060 Performance Analysis for the New g-2 Experiment at Fermilab 996
 
  • D. Stratakis, M.E. Convery, C. Johnstone, J.A. Johnstone, J.P. Morgan, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • J.D. Crmkovic, W. Morse, V. Tishchenko
    BNL, Upton, Long Island, New York, USA
  • N.S. Froemming
    University of Washington, CENPA, Seattle, USA
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Korostelev
    Lancaster University, Lancaster, United Kingdom
 
  The new g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment to a precision of ±0.14 ppm ─ a fourfold improvement over the 0.54 ppm precision obtained in the g-2 BNL E821experiment. Achieving this goal requires the delivery of highly polarized 3.094 GeV/c muons with a narrow ±0.5% Δp/p acceptance to the g-2 storage ring. In this study, we describe a muon capture and transport scheme that should meet this requirement. First, we present the conceptual design of our proposed scheme wherein we describe its basic features. Then, we detail its performance numerically by simulating the pion production in the (g-2) production target, the muon collection by the downstream beamline optics as well as the beam polarization and spin-momentum correlation up to the storage ring. The sensitivity in performance of our proposed channel against key parameters such as magnet apertures and magnet positioning errors is analyzed  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR006 Muon Beam Tracking and Spin-Orbit Correlations for Precision g-2 Measurements 3397
 
  • D. Tarazona, M. Berz, R. Hipple, K. Makino, M.J. Syphers
    MSU, East Lansing, Michigan, USA
  • M.J. Syphers
    Fermilab, Batavia, Illinois, USA
 
  The main goal of the Muon g-2 Experiment (g-2) at Fermilab is to measure the muon anomalous magnetic moment to unprecedented precision. This new measurement will allow to test the completeness of the Standard Model (SM) and to validate other theoretical models beyond the SM. The close interplay of the understanding of particle beam dynamics and the preparation of the beam properties with the experimental measurement is tantamount to the reduction of systematic errors in the determination of the muon anomalous magnetic moment. We describe progress in developing detailed calculations and modeling of the muon beam delivery system in order to obtain a better understanding of spin-orbit correlations, nonlinearities, and more realistic aspects that contribute to the systematic errors of the g-2 measurement. Our simulation is meant to provide statistical studies of error effects and quick analyses of running conditions for when g-2 is taking beam, among others. We are using COSY, a differential algebra solver developed at Michigan State University that will also serve as an alternative to compare results obtained by other simulation teams of the g-2 Collaboration.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)