Author: Stoel, L.S.
Paper Title Page
MOPOY007 High Energy Booster Options for a Future Circular Collider at CERN 856
 
  • L.S. Stoel, M.J. Barnes, W. Bartmann, F. Burkart, B. Goddard, W. Herr, T. Kramer, A. Milanese, G. Rumolo, E.N. Shaposhnikova
    CERN, Geneva, Switzerland
 
  In case a Future Circular Collider for hadrons (FCC-hh) is constructed at CERN, the tunnels for SPS, LHC and the 100 km collider will be available to house a High Energy Booster (HEB). The different machine options cover a large technology range from an iron-dominated machine in the 100 km tunnel to a superconducting machine in the SPS tunnel. Using a modified LHC as reference, these options are compared with respect to their energy reach, magnet technology and filling time of the collider. Potential issues with beam transfer, reliability and beam stability are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR047 Conceptual Design Considerations for the 50 TeV FCC Beam Dump Insertion 1356
 
  • F. Burkart, M.G. Atanasov, W. Bartmann, B. Goddard, T. Kramer, A. Lechner, A. Sanz Ull, D. Schulte, L.S. Stoel
    CERN, Geneva, Switzerland
  • D. Barna
    University of Tokyo, Tokyo, Japan
 
  Safely extracting and absorbing the 50 TeV proton beams of the FCC-hh collider will be a major challenge. Two extended straight sections (ESS) are dedicated to beam dumping system and collimation. The beam dumping system will fast-extract the beam and transport it to an external absorber, while the collimation system will protect the superconducting accelerator components installed further downstream. The high stored beam energy of about 8.5 GJ per beam means that machine protection considerations will severely constrain the functional design of the ESS and the beam dump line geometry, in addition to dominating the performance specifications of the main sub-systems like kickers and absorber blocks. The general features, including concept choice, optics in the ESS and beam dump line, passive protection devices, layout and integration are described and discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR055 Characterisation of the SPS Slow-extraction Parameters 3918
 
  • F.M. Velotti, W. Bartmann, T. Bohl, C. Bracco, K. Cornelis, M.A. Fraser, B. Goddard, V. Kain, L.S. Stoel
    CERN, Geneva, Switzerland
 
  The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain but its main users are the fixed-target experiments located in the North Area (NA). The beams, which are among the most intense circulating in the SPS, are extracted to the NA over several thousands of turns by exploiting a third-integer resonant extraction. The unavoidable losses intrinsic to such an extraction makes its optimisation one of the main priorities for operation, to reduce beam induced activation of the machine. The settings of the extraction systems, together with the tune sweep speed and the beam characteristics (momentum spread, emittance, etc.) are the parameters that can be controlled for spill and loss optimisation. In this paper, the contribution of these parameters to the slow-extraction spill quality are investigated through tracking simulations. The simulation model is compared with beam measurements and optimisations suggested.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)