Author: Smaluk, V.V.
Paper Title Page
TUPOR013 Analysis of Multi-bunch Instabilities at the Diamond Storage Ring 1685
 
  • R. Bartolini, R.T. Fielder, G. Rehm
    DLS, Oxfordshire, United Kingdom
  • V.V. Smaluk
    BNL, Upton, Long Island, New York, USA
 
  We present recent results of analytical, numerical and experimental analysis of multi-bunch instabilities at the Diamond storage ring. The works compares the impedance estimates from numerical modelling with the analysis of the growth rates of the excited multi-bunch modes in different machine configurations. The contribution of a number of wakefield sources has been identified with very high precision thanks to high quality data provided by the existing Transverse multi-bunch feedback diagnostics  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOR013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY054 A Matlab Interface Package for Elegant Simulation Code 3117
 
  • V.V. Smaluk, T.V. Shaftan, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE contract DE-AC02-98CH10886
A Matlab interface package for Elegant simulation code is under development. This package combines advantages of Elegant, which is one of the most advanced codes for accelerator simulations, with advantages of useful and effective Matlab functions for data processing, analysis, optimization, and real-time machine control using Maltab Middle Layer. A number of functions have been already developed: calculation of lattice parameters and Twiss functions, linear and high-order chromaticity, amplitude-dependent tune shifts, modification of lattice elements, correction of betatron tunes and chromaticity, a set of functions for graphic representation. These functions have been successfully used at NSLS-II for tracking and turn-by-turn simulations near the half-integer resonance, for maximizing tunability and dynamic aperture of NSLS-II Booster, and for calculating limits of top-up Booster energy interlock.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBA01 RF Pinger Commissioning and Beam Dynamics Studies at NSLS-II 3161
 
  • G.M. Wang, B. Holub, Y. Li, J. Rose, T.V. Shaftan, V.V. Smaluk
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE contract DE-SC0012704
NSLS II storage ring RF system has the digital ramp control function, enabling rapid change of the cavity phase and amplitude. This, together with largely overcoupled RF cavity and transmitter geometry, enables the possibility to "ping" the beam in longitudinal phase space. Similar to the pinger commonly used for transverse beam dynamic studies, the RF jump presents with a powerful tool for investigation of the machine longitudinal beam dynamics. During our beam studies, RF phase was jumped within a short interval of time (less than synchrotron period). Using turn-by-turn data from BPMs we measured the machine energy acceptance with and without damping wigglers. This paper presents the beam study results.
 
slides icon Slides THOBA01 [4.365 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMR008 Experimental Crosscheck of Algorithms for Magnet Lattice Correction 3400
 
  • V.V. Smaluk, W. Guo, Y. Hidaka, Y. Li, G.M. Wang, L. Yang, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE contract DE-AC02-98CH10886
Performance, capabilities and limitations of various algorithms for linear magnet optics correction have been studied experimentally at NSLS-II. For the crosscheck, we have selected 4 algorithms based on turn-by-turn beam position analysis: weighted correction of betatron phase and amplitude, independent component analysis, model-independent analysis, and driving-terms-based linear optics characterization. A LOCO algorithm based on closed orbit measurement has been used as a reference. For the correction, either iterative solving of linear problem (matrix inversion with singular-value decomposition) or variational optimization has been used. For all the algorithms, accuracy limitations and convergence of linear lattice correction are discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)